精英家教网 > 高中数学 > 题目详情
已知数列{log2(an-1)}(n∈N+)为等差数列,且a1=3,a2=5,则
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=(  )
分析:令bn=log2(an-1),(n∈N+),依题意可求得bn=n,于是可得an=2n+1,从而可求得
1
an+1-an
=
1
2n
,利用等比数列的求和公式即可得到答案.
解答:解:令bn=log2(an-1),(n∈N+),依题意{bn}为等差数列,
∵a1=3,a2=5,
∴b1=log2(3-1)=1,b2=log2(5-1)=2,
∵{bn}为等差数列,设其公差为d,则d=1,
∴bn=n,
∴an=2n+1,
1
an+1-an
=
1
(2n+1+1)-(2n+1)
=
1
2n

显然{
1
2n
}是首项为
1
2
,公比为
1
2
的等比数列,
1
a2-a1
+
1
a3-a2
+
1
a4-a3
+…+
1
an+1-an
=
1
2
+
1
22
+
1
23
+…+
1
2n

=
1
2
(1-(
1
2
)
n
)
1-
1
2
=1-(
1
2
)
n

故选C.
点评:本题考查数列的求和,根据题意求得an=2n+1是关键,考查等比数列的求和公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=(  )
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9
(1)求数列{an}的通项公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步练习册答案