精英家教网 > 高中数学 > 题目详情

已知函数
(1).求函数f(x)的单调区间及极值;
(2).若x1≠x2满足f(x1)=f(x2),求证:x1+x2<0

(1)的增区间是,减区间是处取得极小值,无极大值;(2)证明过程详见解析.

解析试题分析:本题主要考查函数的单调性、函数的极值、不等式证明等基础知识,意在考查考生的运算求解能力、推理论证能能力以及分类讨论思想和等价转化思想的应用.第一问,对求导,利用单调递增,单调递减,判断函数的单调性,利用函数的单调性判断函数的极值;第二问,构造新函数,利用的正负,判断函数的单调性,求出最小值,得到,即,利用的单调性,比较2个自变量的大小.
试题解析:(1)∵
∴当时,;当时,.
的增区间是,减区间是.
所以处取得极小值,无极大值.   6分
(2)∵,由(1)可知异号.
不妨设,则.
=,   8分

所以上是增函数.   10分
,∴
又∵上是增函数,
,即.   12分
考点:函数的单调性、函数的极值、不等式证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数满足,且为自然对数的底数.
(1)已知,求处的切线方程;
(2)若存在,使得成立,求的取值范围;
(3)设函数为坐标原点,若对于时的图象上的任一点,在曲线上总存在一点,使得,且的中点在轴上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数
(Ⅰ)若曲线在点处的切线与直线平行,求的值;
(Ⅱ)记,且.求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数在其定义域上为增函数,求的取值范围;
(2)当时,函数在区间上存在极值,求的最大值.
(参考数值:自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数上的最小值;
(2)对一切恒成立,求实数的取值范围;
(3)证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的极值点,求的极大值;
(2)求的范围,使得恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其图象与轴交于两点,且x1x2
(1)求的取值范围;
(2)证明:为函数的导函数);
(3)设点C在函数的图象上,且△ABC为等腰直角三角形,记,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的单调区间;
(2)当时,若方程上有两个实数解,求实数的取值范围;
(3)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数与函数在点处有公共的切线,设.
(1) 求的值
(2)求在区间上的最小值.

查看答案和解析>>

同步练习册答案