精英家教网 > 高中数学 > 题目详情

【题目】如图在棱锥中, 为矩形, 与面角, 与面角.

1)在上是否存在一点,使,若存在确定点位置,若不存在,请说明理由;

2)当中点时,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)法一:要证明PC面ADE,只需证明ADPC,通过证明即可,然后推出存在点E为PC中点.

法二:建立如图所示的空间直角坐标系D﹣XYZ,设,通过得到,即存在点E为PC中点.

(2)由(1)知求出面ADE的法向量,面PAE的法向量,利用空间向量的数量积.求解二面角P﹣AE﹣D的余弦值.

试题解析:

(Ⅰ)法一:要证明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在点E为PC中点

法二:建立如图所示的空间直角坐标系D-XYZ,

由题意知PD=CD=1,

,设

,

,得

即存在点E为PC中点。

(Ⅱ)由(Ⅰ)知

设面ADE的法向量为,面PAE的法向量为

由的法向量为得,

同理求得 所以

故所求二面角P-AE-D的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上的最小值为,求的值;

2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲乙两家公司都愿意聘用某求职者,这两家公式的具体聘用信息如下:

(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;

(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿作了统计,得到如下数据分布:

若分析选择意愿与年龄这两个分类变量,计算得到的的观测值为,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 分别为的中点, .

(1)求证: 平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在底面为正方形的四棱柱中, .

(1)证明:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

时,求函数的单调区间;

对任意的 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥平面平面 的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的导函数f′(x),且对任意x>0,都有f′(x)>.

(1)判断函数F(x)=在(0,+∞)上的单调性;

(2)设x1x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1x2);

(3)请将(2)中结论推广到一般形式,并证明你所推广的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

Ⅰ)当时,求函数在区间上的最大值与最小值;

Ⅱ)当的图像经过点时,求的值及函数的最小正周期.

查看答案和解析>>

同步练习册答案