精英家教网 > 高中数学 > 题目详情
2.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}$$|=4,\overrightarrow a与\overrightarrow b$的夹角为$\frac{π}{3}$,以$\overrightarrow a,\overrightarrow b$为邻边作平行四边形,则此平行四边形的两条对角线中较长的一条的长度为$2\sqrt{7}$.

分析 根据向量加法的平行四边形法则便可知道较长的一条对角线长度应是$|\overrightarrow{a}+\overrightarrow{b}|$,根据条件$(\overrightarrow{a}+\overrightarrow{b})^{2}$能求出,从而得出|$\overrightarrow{a}+\overrightarrow{b}$|.

解答 解:平行四边形的两条对角线中较长的一条的长度为|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{(\overrightarrow{a}+\overrightarrow{b})^{2}}$=$\sqrt{4+8+16}$=$2\sqrt{7}$.
故答案为:2$\sqrt{7}$.

点评 考查向量加法的平行四边形法则,向量$\overrightarrow{a}+\overrightarrow{b}$长度的求法:$|\overrightarrow{a}+\overrightarrow{b}|=\sqrt{(\overrightarrow{a}+\overrightarrow{b})^{2}}$,以及数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-ax+a(a∈R)同时满足:①不等式f(x)≤0 的解集有且只有一个元素;②在定义域内存在0<x1<x1,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和为Sn=f(n).
(1)求数列{an}的通项公式及$\sum_{i=1}^{n+2}$$\frac{1}{{a}_{i}{a}_{i+1}}$的值;
(2)设各项均不为零的数列{cn}中,所有满足cici+1的正整数i的个数称为这个数列{cn}的变号数,令 cn=1-$\frac{a}{{a}_{n}}$,n为正整数,求数列{cn}的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且a2+bc=b2+c2
(1)求∠A的大小;
(2)若b=2,a=$\sqrt{3}$,求边c的大小;
(3)若a=$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=sinx+cosx,g(x)=2sinx,动直线x=t,t∈[0,π]与f(x),g(x)图象分别交于点P,Q,则|PQ|的取值范围是[0,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用数学归纳法证明2n+2>n2(n≥3,n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知在△ABC中,a=$\sqrt{3}$,b=1,b•cosC=c•cosB,则△ABC的面积为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知{an}为等比数列,且a3•a9=2a52,a1=1,则a3=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若x,y满足约束条件$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$,目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是(  )
A.(-1,2 )B.(-4,2 )C.(-4,0]D.(-2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图的程序框图表示求式子1×3×7×15×31×63的值,则判断框内可以填的条件为(  )
A.i≤31?B.i≤63?C.i≥63?D.i≤127?

查看答案和解析>>

同步练习册答案