精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

 某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的 造价为150元,池壁每平方米的造价为120元.设池底长方形长为米.

  (1)求底面积,并用含的表达式表示池壁面积;

  (2)怎样设计水池能使总造价最低?最低造价是多少?

 

【答案】

(1)池壁面积为(平方米);

(2)池底设计为边长40米的正方形时总造价最低,为297600元。

【解析】

试题分析:(Ⅰ)分析题意,本小题是一个建立函数模型的问题,可设水池的底面积为S1,池壁面积为S2,由题中所给的关系,将此两者用池底长方形长x表示出来.

(Ⅱ)此小题是一个花费最小的问题,依题意,建立起总造价的函数解析式,由解析式的结构发现,此函数的最小值可用基本不等式求最值,从而由等号成立的条件求出池底边长度,得出最佳设计方案

解:(1)由题意水池底面积为(平方米)                 3分

池壁面积为(平方米)                     6分

(2)设水池总造价为元,则

              10分

当且仅当时取等号。

故池底设计为边长40米的正方形时总造价最低,为297600元。                   12分

考点:本题主要考查函数模型的选择与应用。

点评:解题的关键是建立起符合条件的函数模型,故分析清楚问题的逻辑联系是解决问题的重点,此类问题的求解的一般步骤是:建立函数模型,进行函数计算,得出结果,再将结果反馈到实际问题中指导解决问题

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案