精英家教网 > 高中数学 > 题目详情

【题目】某商店销售某海鲜,统计了春节前后50天该海鲜的需求量,单位:公斤),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1公斤可获利50元;若供大于求,剩余的削价处理,每处理1公斤亏损10元;若供不应求,可从其它商店调拨,销售1公斤可获利30元.假设商店每天该海鲜的进货量为14公斤,商店的日利润为元.

(1)求商店日利润关于需求量的函数表达式;

(2)假设同组中的每个数据用该组区间的中点值代替.

①求这50天商店销售该海鲜日利润的平均数;

②估计日利润在区间内的概率.

【答案】(1) (2) ①698.8元 ②0.54

【解析】

1)根据不同的需求量,整理出函数解析式;(2)①利用频率分布直方图估计平均数的方法,结合利润函数得到平均利润;②根据利润区间,换算出需求量所在区间,从而找到对应的概率.

(1)商店的日利润关于需求量的函数表达式为:

化简得:

(2)①由频率分布直方图得:

海鲜需求量在区间的频率是

海鲜需求量在区间的频率是

海鲜需求量在区间的频率是

海鲜需求量在区间的频率是

海鲜需求量在区间的频率是

50天商店销售该海鲜日利润的平均数为:

(元)

②由于时,

显然在区间上单调递增,

,得

,得

日利润在区间内的概率即求海鲜需求量在区间的频率:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】20173月郑州市被国务院确定为全国46个生活垃圾分类处理试点城市之一,此后由郑州市城市管理局起草公开征求意见,经专家论证,多次组织修改完善,数易其稿,最终形成《郑州市城市生活垃圾分类管理办法》(以下简称《办法》).《办法》已于2019926日被郑州市人民政府第35次常务会议审议通过,并于2019121日开始施行.《办法》中将郑州市生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾4类.为了获悉高中学生对垃圾分类的了解情况,某中学设计了一份调查问卷,500名学生参加测试,从中随机抽取了100名学生问卷,记录他们的分数,将数据分成7组:,并整理得到如下频率分布直方图:

1)从总体的500名学生中随机抽取一人,估计其分数不低于60的概率;

2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间内的学生人数,

3)学校环保志愿者协会决定组织同学们利用课余时间分批参加垃圾分类,我在实践活动,以增强学生的环保意识.首次活动从样本中问卷成绩低于40分的学生中随机抽取2人参加,已知样本中分数小于405名学生中,男生3人,女生2人,求抽取的2人中男女同学各1人的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆()的离心率为,圆轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为

(Ⅰ)求椭圆的方程;

(Ⅱ)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

(1)求函数的解析式;

(2)若关于的方程恰有两个不同的实根,求实数的值;

(3)数列满足.

证明:①

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的所有棱长都是2分别是的中点.

1)求证:平面

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:当时,

(2)若当时, ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.

1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;

2)质检部门从甲车间8个零件中随机抽取3个零件进行检测,已知三件中有两件是合格品的条件下,另外一件是不合格品的概率.

3)若从甲、乙两车间12个零件中随机抽取2个零件,用表示乙车间的零件个数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点 ,动点满足.

1)求动点的轨迹的方程;

(2)若直线与轨迹有且仅有一个公共点,且与直线相交于点,求证:以为直径的圆过定点.

查看答案和解析>>

同步练习册答案