精英家教网 > 高中数学 > 题目详情

(08年惠州一中五模理)如图,棱锥P―ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(Ⅰ)求证:BD⊥平面PAC

(Ⅱ)求二面角PCDB的大小;

(Ⅲ)求点C到平面PBD的距离.

 

 

方法一:

证:(Ⅰ)在RtBAD中,AD=2,BD=

AB=2,ABCD为正方形,

因此BDAC.                    

PA⊥平面ABCDBDÌ平面ABCD

BDPA .                      

又∵PAAC=A

BD⊥平面PAC.                 

解:(Ⅱ)由PA⊥面ABCD,知ADPD在平面ABCD的射影,又CDAD

CDPD,知∠PDA为二面角PCDB的平面角.                      

又∵PA=AD

∴∠PDA=450 .                                                       

(Ⅲ)∵PA=AB=AD=2

PB=PD=BD= 

C到面PBD的距离为d,由

,                               

         

方法二:

证:(Ⅰ)建立如图所示的直角坐标系,

A(0,0,0)、D(0,2,0)、P(0,0,2).

RtBAD中,AD=2,BD=

AB=2.

B(2,0,0)、C(2,2,0),

  

BDAPBDAC,又APAC=A

BD⊥平面PAC.                       

解:(Ⅱ)由(Ⅰ)得.

设平面PCD的法向量为,则

,∴

故平面PCD的法向量可取为                               

PA⊥平面ABCD,∴为平面ABCD的法向量.             

设二面角PCDB的大小为q,依题意可得

q = 450 .                                                      

(Ⅲ)由(Ⅰ)得

设平面PBD的法向量为,则

,∴x=y=z

故平面PBD的法向量可取为.                             

C到面PBD的距离为  

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年惠州一中五模理) 甲、乙两人各射击一次,击中目标的概率分别是.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.

(Ⅰ)求甲射击4次,至少1次击中目标的概率;

(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;

(Ⅲ)假设某人连续2次未击中目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年惠州一中五模理)    设各项为正数的等比数列的首项,前n项和为,且

(Ⅰ)求的通项;

(Ⅱ)求的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年惠州一中五模理) 已知函数的图象为曲线E.

(Ⅰ) 若曲线E上存在点P,使曲线EP点处的切线与x轴平行,求a,b的关系;

(Ⅱ) 说明函数可以在时取得极值,并求此时a,b的值;

(Ⅲ) 在满足(2)的条件下,恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年惠州一中五模理) 已知椭圆的一个焦点,对应的准线方程为,且离心率满足成等比数列.

(1)求椭圆的方程;

(2)试问是否存在直线,使与椭圆交于不同的两点,且线段恰被直线平分?若存在,求出的倾斜角的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案