【题目】已知函数.
(1)判断函数的奇偶性;
(2)是否存在这样的实数,使对所有的均成立?若存在,求出适合条件的实数的值或范围;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A、B、C所对的边为a、b、c,且 asinC﹣c(2+cosA)=0.
(1)求角A的大小;
(2)若△ABC的最大边长为 ,且sinC=2sinB,求最小边长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足sin2B+sin2C=sin2A+2sinBsinCsin(B+C). (Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 | 不超过 | |
第一种生产方式 | ||
第二种生产方式 |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2|x+1|+|x﹣a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函数f(x)的最小值为3,求实数 a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数且,在数列中,首项,是其前项和,且,.
(1)设,,证明数列是等比数列,并求出的通项公式;
(2)设,,证明数列是等差数列,并求出的通项公式;
(3)若当且仅当时,数列取到最小值,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两组各有三名同学,他们在一次测试中的成绩分别为:甲组:88、89、90;乙组:87、88、92.如果分别从甲、乙两组中随机选取一名同学,则这两名同学的成绩之差的绝对值不超过3的概率是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数,则下列说法不正确的是( )
A.其图象开口向上,且始终与轴有两个不同的交点
B.无论取何实数,其图象始终过定点
C.其图象对称轴的位置没有确定,但其形状不会因的取值不同而改变
D.函数的最小值大于
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com