精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,两点P1(x1 , y1),P2(x2 , y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.现将边长为1的正三角形ABC按如图所示的方式放置,其中顶点A与坐标原点重合.记边AB所在直线的斜率为k,0≤k≤ .求:当|BC|取最大值时,边AB所在直线的斜率的值.

【答案】解:设边AB所在直线的倾斜角为θ,则

∴|BC|=|cosθ﹣cos(θ+ )|+|sinθ﹣sin(θ+ )|
=
=

∴|BC|= = sin(θ+

∴当θ+ = 时,即θ= 时,|BC|取得最大值
此时 ,∵ (或由 求k)∴

【解析】设边AB所在直线的倾斜角为θ,则 ,利用L﹣距离的定义,表示|BC|,结合辅助角公式,求出取最大值时,边AB所在直线的斜率的值.
【考点精析】本题主要考查了直线的斜率的相关知识点,需要掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=2x2+bx+c在 上是减函数,在 上是增函数,且两个零点x1 , x2满足|x1﹣x2|=2,求二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)试讨论函数的极值情况;

(2)证明:当时,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x+ 有如下性质:如果常数t>0,那么该函数在 上是减函数,在 上是增函数.
(1)已知f(x)= ,x∈[﹣1,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=﹣x﹣2a,若对任意x1∈[﹣1,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的圆上, 垂直与圆所在平面, 的垂心.

(1)求证:平面平面

(2)若,点在线段上,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(a+2)x+alnx.
(1)当a=1时,求函数f(x)的极值;
(2)设定义在D上的函数y=g(x)在点P(x0 , y0)处的切线方程为l:y=h(x).当x≠x0时,若 >0在D内恒成立,则称P为函数y=g(x)的“转点”.当a=8时,问函数y=f(x)是否存在“转点”?若存在,求出“转点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=m2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠,则m+n的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.

(1)求证:A1B∥平面ADC1
(2)求平面ADC1与ABA1所成二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且f(x)满足f(x+π)=f(x),当[0, )时,f(x)=tanx,则f( )=

查看答案和解析>>

同步练习册答案