精英家教网 > 高中数学 > 题目详情
某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:
抽取球数n
50
100
200
500
1 000
2 000
优等品数m
45
92
194
470
954
1 902
优等品频率
 
 
 
 
 
 
(1)计算表中乒乓球优等品的频率;
(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)
(1)频率依次是0.900,0.920,0.970,0.940,0.954,0.951.
(2)0.950.
(1)依据公式p=,可以计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.
(2)由(1)知,抽取的球数n不同,计算得到的频率值虽然不同,但随着抽取球数的增多,却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为.
(1)求这一技术难题被攻克的概率;
(2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金万元;若只有2人攻克,则奖金奖给此二人,每人各得万元;若三人均攻克,则奖金奖给此三人,每人各得万元。设甲得到的奖金数为X,求X的分布列和数学期望。(本题满分12分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设A、B为互斥事件,且P(A)=0.1,P(B)=0.8,并记“AB”表示事件A、B同时发生,则P()=_________,P(AB)=___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
经统计,某大医院一个结算窗口每天排队结算的人数及相应的概率如下:
排队人数
0—5
6—10
11—15
16—20
21—25
25人以上
概   率
0.1
0.15
0.25
0.25
0.2
0.05
(1)每天不超过20人排队结算的概率是多少?
(2)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,医院就需要增加结算窗口,请问该医院是否需要增加结算窗口?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对同一目标进行两次射击,第一、二次射击命中目标的概率分别为0.5和0.7,则两次射击中至少有一次命中目标的概率是(  )
A.0.35B.0.42C.0.85D.0.15

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙、丙三人参加了一家公司的招聘面试,设每人面试合格的概率都是
1
2
,且面试是否合格互不影响求:
(1)三人面试都不合格的概率;
(2)至少有1人面试合格的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两个事件对立是这两个事件互斥的(    )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出命题:(1)某彩票的中奖概率为,意味着买张彩票一定能中奖;
(2)对立事件一定是互斥事件;
(3)若事件A、B满足P(A)+P(B)=1,则A、B为对立事件;
(4)从装有2个红球和2个白球的口袋中任取2个球,记事件为“恰有1个白球”,记事件为“恰有2个白球”,则为互斥而不对立的两个事件。
其中正确命题的个数是  (    )
A.3            B.2            C.1            D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名女生的概率是___ _______.

查看答案和解析>>

同步练习册答案