精英家教网 > 高中数学 > 题目详情
一次函数上的增函数,,已知
(1)求
(2)若单调递增,求实数的取值范围;
(3)当时,有最大值,求实数的值.
(1);(2);(3).

试题分析:(1)先设,然后由恒成立得方程组,求解方程组即可,注意取的解;(2)由(1)得,根据二次函数的图像与性质可知,要使单调递增,只须该函数的对称轴大于或于1即可;(3)这是二次函数中定区间,而轴不定的最值问题,结合函数的图像,分对称轴在定区间的中点的左边、对称轴在定区间的中点的右边两种情况进行分类求解即可.
试题解析:(1)∵上的增函数,∴设          1分

                              3分
解得(不合题意舍去)                  5分
                             6分
(2)       7分
对称轴,根据题意可得                8分
解得
的取值范围为                       9分
(3)①当时,即
,解得,符合题意           11分
②当时,即
,解得,符合题意          13分
由①②可得                     14分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=3ax2+2bx+c,a+b+c=0,且f(0)·f(1)>0.
(1)求证:-2<<-1.
(2)若x1,x2是方程f(x)=0的两个实根,求|x1-x2|的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x2-2017x+8052+|x2-2017x+8052|,则f(1)+f(2)+f(3)+…+f(2013)=    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数yf(x),xD,若存在常数C,对任意的x1D,存在唯一的x2D使得C,则称函数f(x)在D上的几何平均数为C.已知f(x)=x3x∈[1,2],则函数f(x)=x3在[1,2]上的几何平均数为(  )
A.B.2
C.4 D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=lg|x|,则函数y=f(x)与y=g(x)的图象在区间[-5,5]内的交点个数为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x+2x,g(x)=x+lnx的零点分别为x1,x2,则x1,x2的大小关系是(  )
A.x1<x2B.x1>x2
C.x1=x2D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对a,b∈R,记max{a,b}=函数f(x) =max{|x+1|,|x-2|}(x∈R)的最小值是(  )
A.0B.C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数yf(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y+2是否符合公司要求的奖励函数模型,并说明原因;
(2)若该公司采用模型函数y作为奖励函数模型,试确定最小的正整数a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的定义域和值域都是,其对应关系如下表所示,则     

1
2
3
4
5

5
4
3
1
2
 

查看答案和解析>>

同步练习册答案