精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的奇函数,且满足f(x+2)=﹣ ,当1≤x≤2时,f(x)=x,则f(﹣ )=

【答案】﹣
【解析】解:由f(x+2)=﹣ ,得f(x+4)=﹣ =f(x),
∴f(x)是周期为4的奇函数,又当1≤x≤2时,f(x)=x,
∴f(﹣ )=﹣f( )=﹣f(4+ )=﹣f( )=﹣
所以答案是:-
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇,以及对函数的值的理解,了解函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期内的图象时,列表并填入了部分数据,如下表:

ωx+φ

0

π

x

π

Asin(ωx+φ)

0

3

﹣3

0


(1)请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点的横坐标缩短为原来的 ,再将所得图象向左平移 个单位,得到y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点为椭圆上一点. 的重心为,内心为,且,则该椭圆的离心率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前三项依次为a,3,5a,n项和为SnSk=121.

(1)ak的值;

(2)设数列{bn}的通项bn证明数列{bn}是等差数列并求其前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱台 中,分别为AC,CB的中点.

(1)求证:平面

(2)若,求证:平面 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中点.

现沿AD把平面PAD折起,使得PA⊥AB(如图乙所示),E、F分别为BC、AB边的中点.

(1)求证:平面PAE⊥平面PDE;

(2)在PE上找一点Q,使得平面BDQ⊥平面ABCD.

(3)在PA上找一点G,使得FG∥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱台的上下底面分别是边长为的正方形,底面,点的中点,边上,且.

(1)求证:∥平面

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连接球面上两点的线段称为球的弦,半径为4的球的两条弦AB,CD的长度分别为2 和4 ,M,N分别是AB,CD的中点,两条弦的两端都在球面上运动,有下面四个命题:
①弦AB,CD可能相交于点M;
②弦AB,CD可能相交于点N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式:(a+1)x2-(2a+3)x+2<0.

查看答案和解析>>

同步练习册答案