【题目】已知f(x)是定义在R上的奇函数,且满足f(x+2)=﹣ ,当1≤x≤2时,f(x)=x,则f(﹣ )= .
【答案】﹣
【解析】解:由f(x+2)=﹣ ,得f(x+4)=﹣ =f(x),
∴f(x)是周期为4的奇函数,又当1≤x≤2时,f(x)=x,
∴f(﹣ )=﹣f( )=﹣f(4+ )=﹣f( )=﹣ .
所以答案是:- .
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇,以及对函数的值的理解,了解函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.
科目:高中数学 来源: 题型:
【题目】在用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ | 0 | π | 2π | ||
x | π | ||||
Asin(ωx+φ) | 0 | 3 | ﹣3 | 0 |
(1)请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点的横坐标缩短为原来的 ,再将所得图象向左平移 个单位,得到y=g(x)的图象,求g(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前三项依次为a,3,5a,前n项和为Sn,且Sk=121.
(1)求a及k的值;
(2)设数列{bn}的通项bn=,证明数列{bn}是等差数列,并求其前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中点.
现沿AD把平面PAD折起,使得PA⊥AB(如图乙所示),E、F分别为BC、AB边的中点.
(1)求证:平面PAE⊥平面PDE;
(2)在PE上找一点Q,使得平面BDQ⊥平面ABCD.
(3)在PA上找一点G,使得FG∥平面PDE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】连接球面上两点的线段称为球的弦,半径为4的球的两条弦AB,CD的长度分别为2 和4 ,M,N分别是AB,CD的中点,两条弦的两端都在球面上运动,有下面四个命题:
①弦AB,CD可能相交于点M;
②弦AB,CD可能相交于点N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正确命题的序号为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com