精英家教网 > 高中数学 > 题目详情
7.数列{an}前n项和为Sn,已知a1=1,a2=6,Sn=3Sn-1-2Sn-2+2n(n≥3).
(1)求证:{$\frac{{a}_{n}}{{2}^{n}}$}(n∈N*)是等差数列;
(2)求{an}前n项和Sn

分析 由数列递推式变形得到Sn+1-Sn=2(Sn-Sn-1)-1,即an+1=2an-1(n≥2),(1)由已知条件(n-1),从而得到an=n•2n-1,由此利用错位相减法能求出数列{an}的前n项和Sn

解答 解:(1)∵Sn=3Sn-1-2Sn-2+2n
∴Sn-Sn-1=2(Sn-1-Sn-2)+2n,即an=2an-1+2n(n≥3),
所以$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+1,
又a1=1,a2=6,满足上式,
所以{$\frac{{a}_{n}}{{2}^{n}}$}(n∈N*)是等差数列;
(2)由(1)得到$\frac{{a}_{n}}{{2}^{n}}=n-\frac{1}{2}$,所以an=${2}^{n}(n-\frac{1}{2})$(n∈N*),
所以前n项和Sn=${2}^{1}(1-\frac{1}{2})+{2}^{2}(2-\frac{1}{2})+{2}^{3}(3-\frac{1}{2})+…+{2}^{n}$(n-$\frac{1}{2})$,①
2Sn=${2}^{2}(1-\frac{1}{2})+{2}^{3}(2-\frac{1}{2})+…+{2}^{n}(n-1-\frac{1}{2})$+${2}^{n+1}(n-\frac{1}{2})$,②
①-②得-Sn=2(1-$\frac{1}{2}$)+22+23+…+2n-${2}^{n+1}(n-\frac{1}{2})$=$\frac{2(1-{2}^{n})}{1-2}-{2}^{n+1}(n-\frac{1}{2})$-1=${2}^{n+1}(\frac{3}{2}-n)-3$,
所以Sn=3-${2}^{n+1}(\frac{3}{2}-n)$.

点评 本题考查了数列递推式,本题考查等差数列的证明,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}中,a4•a8=-12,a3+a9=4,求{an}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题:“若a2+b2=0,则a=0且b=0”的逆否命题是(  )
A.若a2+b2=0,则a=0且b≠0B.若a2+b2≠0,则a≠0或b≠0
C.若a=0且b=0,则 a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上一点,F1(-c,0),F2(c,0)(c>0)为左、右焦点,△PF1F2周长为6c,面积$\frac{2\sqrt{3}}{3}$a2,则双曲线的离心率是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,设a=($\sqrt{3}$-1)c,$\frac{sinBcosC}{cosBsinC}$=$\frac{2a-c}{c}$,求三角形的三内角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)短轴上的两个三等分点与两焦点构成一个正方形.
(1)求椭圆的离心率;
(2)若直线l为圆x2+y2=$\frac{90}{19}$的一条切线,l与椭圆C交于A、B两点,且OA⊥OB(O为坐标原点),求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在正整数集上的函数f(x)满足以下条件:①f(m+n)=f(m)+f(n)+mn,其中m,n为正整数;②f(3)=6.则f(100)=(  )
A.100B.4950C.5050D.5151

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$|+|$\overrightarrow{b}$|相等吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a>0,b>0,ab+a-b=2$\sqrt{2}$,则ab-a-b的值为(  )
A.$\sqrt{6}$B.2或-2C.-2D.2

查看答案和解析>>

同步练习册答案