【题目】在直角坐标系中, ,动点满足:以为直径的圆与轴相切.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,直线过点且与交于两点,当与的面积之和取得最小值时,求直线的方程.
【答案】(1) ;(2) .
【解析】试题分析:(1)设点,圆心,由圆与轴相切于点,得| ,结合两点间的距离公式整理可得点P的轨迹方程为 ;
(2)(ⅰ)当直线l的斜率不存在时,方程为 ,可得 .
(ⅱ)当直线l的斜率存在时,设方程为 联立直线方程与抛物线方程,可得关于的一元二次方程,利用根与系数的关系可得
再由 ,结合等号成立的条件求得的值,进一步得到值,则与的面积之和取得最小值时,直线的方程可求
试题解析:
(1)设点,圆心,
圆与轴相切于点,则,
所以,
又点为的中点,所以,
所以,整理得: .
所以点的轨迹方程为: .
(2)(ⅰ)当直线的斜率不存在时,方程为: ,
易得.
(ⅱ)当直线的斜率存在时,设方程为: , , ,
由消去并整理得: ,
所以, ,
所以 ,
当且仅当时等号成立,又,
所以, 或, ,
所以,解得: ,
因为,所以当两个三角形的面积和最小时,
直线的方程为: .
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:
根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :
(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;
(Ⅱ)从两组“痴迷”的同学中随机选出2人,记为选出的两人中甲大学的人数,求的分布列和数学期望;
(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值与的大小,及方差与的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为坐标原点,动点在椭圆上,过作轴的垂线,垂足为,点满足.(Ⅰ)求点的轨迹方程;
(Ⅱ)过的直线与点的轨迹交于两点,过作与垂直的直线与点的轨迹交于两点,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆的圆心为,直线过点且与轴不重合, 交圆于两点,过作的平行线交于点.
(1)证明为定值,并写出点的轨迹方程;
(2)设,过点作直线,交点的轨迹于两点 (异于),直线的斜率分别为,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥中, 平面, ,点分别为的中点,设直线与平面交于点.
(1)已知平面平面,求证: .
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com