【题目】已知椭圆E: ,不经过原点O的直线l:y=kx+m(k>0)与椭圆E相交于不同的两点A、B,直线OA,AB,OB的斜率依次构成等比数列.
(Ⅰ)求a,b,k的关系式;
(Ⅱ)若离心率 且 ,当m为何值时,椭圆的焦距取得最小值?
【答案】解:(Ⅰ)设A(x1 , y1),B(x2 , y2), 由直线OA,AB,OB的斜率依次构成等比数列,
得 ,
由 ,可得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,
故△=(2a2km)2﹣4(b2+a2k2)(a2m2﹣a2b2)>0,
即b2﹣m2+a2k2>0,
又x1+x2=﹣ ,x1x2= ,
则 ,
即 ,
即 ,
又直线不经过原点,所以m≠0,
所以b2=a2k2即b=ak;
(Ⅱ)若 ,则 , ,
又k>0,得 ,
则x1+x2=﹣ =﹣ m,x1x2= = m2﹣2c2 ,
|AB|= =
= ,
化简得 (△>0恒成立),
当
【解析】(Ⅰ)设A(x1 , y1),B(x2 , y2),运用等比数列的中项的性质,以及联立直线方程和椭圆方程,运用韦达定理,化简整理,即可得到b=ak;(Ⅱ)运用离心率公式,可得斜率k,再由弦长公式,结合条件,运用基本不等式即可得到所求最值,以及m的取值.
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,PA垂直于底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A{x| ≥0},B={x|x2﹣2x﹣3<0},C={x|x2﹣(2a+1)x+a(a+1)<0}.
(1)求集合A,B及A∪B;
(2)若C(A∩B),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C与x轴相切,圆心C在射线3x﹣y=0(x>0)上,直线x﹣y=0被圆C截得的弦长为2
(1)求圆C标准方程;
(2)若点Q在直线l1:x+y+1=0上,经过点Q直线l2与圆C相切于p点,求|QP|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, , ,且的最小值为.
(1)求的值;
(2)若不等式对任意恒成立,其中是自然对数的底数,求的取值范围;
(3)设曲线与曲线交于点,且两曲线在点处的切线分别为, .试判断, 与轴是否能围成等腰三角形?若能,确定所围成的等腰三角形的个数;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=logax,g(x)=loga(2x+t﹣2)2 , (a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2]时F(x)=g(x)﹣f(x)有最小值为2,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
(备注:函数y=x+ 在区间(0,1)上单调递减,在区间(1,+∞)上单调递增).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求b的值;
(2)判断函数f(x)在R上的单调性并加以证明;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com