精英家教网 > 高中数学 > 题目详情
定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)(f(x2)-f(x1))>0,则下述式子中正确的是(  )
A、f(-
3
4
)≥f(a2-a+1)
B、f(-
3
4
)≤f(a2-a+1)
C、f(-
3
4
)=f(a2-a+1)
D、以上关系均不确定
分析:由“x1,x2∈(-∞,0](x1≠x2),有(x2-x1)(f(x2)-f(x1))>0”可等有“x2>x1时,f(x2)>f(x1)”,符合增函数的定义,所以f(x)在(-∞,0]为增函数,再由f(x)为偶函数,则知f(x)在(0,+∞]为减函数,利用配方法对式子a2-a+1进行变形得出最小值,再判断函数值的大小,可得结论.
解答:解:x1,x2∈(-∞,0](x1≠x2),有(x2-x1)(f(x2)-f(x1))>0
∴x2>x1时,f(x2)>f(x1
∴f(x)在(-∞,0]为增函数
∵f(x)为偶函数
∴f(x)在(0,+∞]为减函数
∵a2-a+1=(a-
1
2
)
2
+
3
4
3
4

∴f(a2-a+1)≤f(
3
4
)=f(-
3
4

故选A.
点评:本题主要考查单调性定义的变形与应用,还考查了奇偶性在对称区间上的单调性,结论是:偶函数在对称区间上的单调相反,奇函数在对称区间上的单调性相同.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)是最小正周期为π的周期函数,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(
3
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、定义在R上的偶函数f(x),当x≥0时有f(2+x)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上是减函数,若α、β是锐角三角形中两个不相等的锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;
②f(x)的图象关于x=l对称;
③f(x)在[l,2l上是减函数;
④f(2)=f(0),
其中正确命题的序号是
①②④
①②④
.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在R上的偶函数f(x).当x≥0时,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函数f(x)的解析式并画出函数的图象;
(Ⅱ)写出函数f(x)的值域.

查看答案和解析>>

同步练习册答案