精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的右焦点为 为直线上一点,线段于点,若,则__________

【答案】

【解析】

由条件椭圆

椭圆的右焦点为F,可知F(1,0),

设点A的坐标为(2m),则=1m),

B的坐标为

B在椭圆C上,

,解得:m=1

A的坐标为(21),.

答案为: .

型】填空
束】
16

【题目】四棱锥中, 是平行四边形, ,点为棱的中点,点在棱上,且,平面交于点,则异面直线所成角的正切值为__________

【答案】

【解析】

延长的延长线与点Q,连接QEPA于点K,设QA=x

,得,则,所以.

的中点为M,连接EM,则

所以,则,所以AK=.

AD//BC得异面直线所成角即为,

则异面直线所成角的正切值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上。”这就是著名的欧拉线定理,在中,分别是外心、垂心和重心,边的中点,下列四个结论:(1);(2);(3);(4)正确的个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,点在直线.数列满足,前9项和为153.

(1)求数列的通项公式;

(2),数列的前项和为,求及使不等式对一切都成立的最小正整数的值;

(3),问是否存在,使得成立?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】”是“对任意的正数 ”的( )

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

【答案】A

【解析】分析:根据基本不等式,我们可以判断出”?“对任意的正数x2x+≥1”对任意的正数x2x+≥1”?“a=

真假,进而根据充要条件的定义,即可得到结论.

解答:解:当“a=时,由基本不等式可得:

对任意的正数x2x+≥1”一定成立,

“a=”?“对任意的正数x2x+≥1”为真命题;

对任意的正数x2x+≥1时,可得“a≥

对任意的正数x2x+≥1”?“a=为假命题;

“a=对任意的正数x2x+≥1充分不必要条件

故选A

型】单选题
束】
9

【题目】如图是一几何体的平面展开图,其中为正方形, 分别为 的中点,在此几何体中,给出下面四个结论:①直线与直线异面;②直线与直线异面;③直线平面;④平面平面

其中一定正确的选项是( )

A. ①③ B. ②③ C. ②③④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为双曲线 的右焦点,过坐标原点的直线依次与双曲线的左、右支交于点,若 ,则该双曲线的离心率为(

A. B. C. D.

【答案】B

【解析】,设双曲线的左焦点为连接,由对称性可知, 为矩形,且故选B.

方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.

型】单选题
束】
12

【题目】到点 及到直线的距离都相等,如果这样的点恰好只有一个,那么实数的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列满足

1的通项公式;

2求和:

【答案】1;(2

【解析】试题分析:(1)根据等差数列 列出关于首项公差的方程组,解方程组可得的值,从而可得数列的通项公式;(2)利用已知条件根据题意列出关于首项公比 的方程组,解得的值求出数列的通项公式,然后利用等比数列求和公式求解即可.

试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

从而.

型】解答
束】
18

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面 分别为 的中点,点在线段上.

(1)求证: 平面

(2)若直线与平面所成的角和直线与平面所成的角相等,求的值.

【答案】(1)证明见解析;(2) .

【解析】试题分析:

在平行四边形中,由条件可得,进而可得。由侧面底面,得底面,故得,所以可证得平面.(Ⅱ)先证明平面平面,由面面平行的性质可得平面.(Ⅲ)建立空间直角坐标系,通过求出平面的法向量,根据线面角的向量公式可得

试题解析:

(Ⅰ)证明:在平行四边形中,

分别为 的中点,

∵侧面底面,且

底面

底面

平面 平面

平面

(Ⅱ)证明:∵的中点, 的中点,

平面 平面

平面

同理平面

平面 平面

∴平面平面

平面

平面

(Ⅲ)解:由底面 ,可得 两两垂直,

建立如图空间直角坐标系

所以

,则

易得平面的法向量

设平面的法向量为,则:

,得

,得

∵直线与平面所成的角和此直线与平面所成的角相等,

,即

解得(舍去),

点睛用向量法确定空间中点的位置的方法

根据题意建立适当的空间直角坐标系,由条件确定有关点的坐标,运用共线向量用参数(参数的范围要事先确定确定出未知点的坐标,根据向量的运算得到平面的法向量或直线的方向向量,根据所给的线面角(或二面角)的大小进行运算,进而求得参数的值,通过与事先确定的参数的范围进行比较,来判断参数的值是否符合题意进而得出点是否存在的结论。

型】解答
束】
21

【题目】如图,椭圆上的点到左焦点的距离最大值是,已知点在椭圆上,其中为椭圆的离心率.

(1)求椭圆的方程;

(2)过原点且斜率为的直线交椭圆于两点,其中在第一象限,它在轴上的射影为点,直线交椭圆于另一点.证明:对任意的,点恒在以线段为直径的圆内.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面,底面为长方形,且的中点,作于点.

(1)证明:平面

(2)若三棱锥的体积为,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面的菱形,侧面为正三角形,其所在平面垂直于底面.

(1)若为线段的中点,求证:平面

(2)若为边的中点,能否在棱上找到一点,使平面平面?并证明你的结论.

查看答案和解析>>

同步练习册答案