精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)在定义域(-1+∞)内满足f(0)=0,且f′(x)=,(f′(x))是f(x)的导数)
(Ⅰ)求f(x)的表达式.
(Ⅱ)当a=1时,讨论f(x)的单调性
(Ⅲ)设h(x)=(ex-P)2+(x-P)2,证明:h(x)≥
解:(Ⅰ)由f′(x)=,可得f(x)=ln(1+x)-ax+b,b为实常数.
又f(0)=0b=0.
∴f(x)=ln(1+x)-ax.
(Ⅱ)当a=1时,f(x)= ln(1+x)-x.  (x>-1)
f′(x)=  
∵x>-1  由f′(x)=0x=0  
∴当x∈(-1,0]时f′(x)≥0,此时f(x)递增
当x∈(0,+∞)时,f′(x)<0,此时f(x)递减
即f(x)在(-1,0)上单调增,在(0,+∞)上单调减
(Ⅲ)由(Ⅱ)知f(x)≤f(0)=0在(-1,+∞)内恒成立
∴ln (1+x) ≤x,∴ex≥1+x ex-x≥1    
∴(ex-x)2≥1
≤(ex-P)2+(P-x)2
即h(x)=(ex-P)2+(P-x)2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x+
1
2
)
为奇函数,设g(x)=f(x)+1,则g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=(  )
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
lnx
x

(1)求函数y=f(x)的图象在x=
1
e
处的切线方程;
(2)求y=f(x)的最大值;
(3)比较20092010与20102009的大小,并说明为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
lnx
x

(1)求函数y=f(x)的图象在x=
1
e
处的切线方程;
(2)求y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
f(x)
ex
(x∈R)
满足f′(x)>f(x),则f(1)与ef(0)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下命题:
命题p:已知函数y=f(x)=
1-x3
,则|f(a)|<2(其中f(a)表示函数y=f(x)在x=a时的函数值);
命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求实数a的取值范围,使命题p,q中有且只有一个为真命题.

查看答案和解析>>

同步练习册答案