【题目】如图,某校有一块形如直角三角形ABC的空地,其中∠B为直角,AB长40米,BC长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.
给出下列四个结论:
①f(0)=0;②f(x)为偶函数;
③f(x)为R上减函数;④f(x)为R上增函数.
其中正确的结论是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学为研究函数的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设,则.请你参考这些信息,推知函数的图象的对称轴是______;函数的零点的个数是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】环保组织随机抽检市内某河流2015年内100天的水质,检测单位体积河水中重金属含量,并根据抽检数据绘制了如下图所示的频率分布直方图.
(Ⅰ)求图中的值;
(Ⅱ)假设某企业每天由重金属污染造成的经济损失(单位:元)与单位体积河水中重金属含量
的关系式为,若将频率视为概率,在本年内随机抽取一天,试估计这天经济损失不超过500元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)﹣b 是奇函数”.
(1)将函数g(x)=x3﹣3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)= 图象对称中心的坐标;
(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)﹣b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex , x∈R.
(1)若直线y=kx+1与f (x)的反函数g(x)=lnx的图象相切,求实数k的值;
(2)设x>0,讨论曲线y=f (x) 与曲线y=mx2(m>0)公共点的个数.
(3)设a<b,比较 与 的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于公差d>0的等差数列{an}的四个命题:
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列 是递增数列;
p4:数列{an+3nd}是递增数列;
其中真命题是( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com