【题目】如图,四棱锥的底面是菱形,底面,分别是的中点,,,.
(I)证明:;
(II)求直线与平面所成角的正弦值;
(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.
【答案】(Ⅰ)见解析; (Ⅱ); (Ⅲ)见解析.
【解析】
(Ⅰ)由题意结合几何关系可证得平面,据此证明题中的结论即可;
(Ⅱ)建立空间直角坐标系,求得直线的方向向量与平面的一个法向量,然后求解线面角的正弦值即可;
(Ⅲ)假设满足题意的点存在,设,由直线与的方向向量得到关于的方程,解方程即可确定点F的位置.
(Ⅰ)由菱形的性质可得:,结合三角形中位线的性质可知:,故,
底面,底面,故,
且,故平面,
平面,
(Ⅱ)由题意结合菱形的性质易知,,,
以点O为坐标原点,建立如图所示的空间直角坐标系,
则:,
设平面的一个法向量为,
则:,
据此可得平面的一个法向量为,
而,
设直线与平面所成角为,
则.
(Ⅲ)由题意可得:,假设满足题意的点存在,
设,,
据此可得:,即:,
从而点F的坐标为,
据此可得:,,
结合题意有:,解得:.
故点F为中点时满足题意.
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,,第五组.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“”发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列几个命题:①若,则;②“若,则互为相反数”的否命题“;③“若则”的逆命题;④“若,则互为倒数”的逆否命题. 其中真命题的序号__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0.当直线l被圆C截得的弦长为时,求
(Ⅰ)a的值;
(Ⅱ)求过点(3,5)并与圆C相切的切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示。
(1)求居民月收入在[3000,3500)内的频率;
(2)根据频率分布直方图求出样本数据的中位数;
(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1,an+1=,(n∈N*)
(1)求数列{an}的通项公式an,
(2)若数列{bn}满足bn=(3n﹣1)an,数列{bn}的前n项和为Tn,若不等式(﹣1)nλ<Tn对一切n∈N*恒成立,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知是椭圆的一个顶点,的短轴是圆的直径,直线,过点P且互相垂直,交椭圆于另一点D,交圆于A,B两点
Ⅰ求椭圆的标准方程;
Ⅱ求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com