精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是菱形,底面分别是的中点,.

I)证明:

II)求直线与平面所成角的正弦值;

III)在边上是否存在点,使所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.

【答案】(Ⅰ)见解析; (Ⅱ); (Ⅲ)见解析.

【解析】

()由题意结合几何关系可证得平面,据此证明题中的结论即可;

()建立空间直角坐标系,求得直线的方向向量与平面的一个法向量,然后求解线面角的正弦值即可;

()假设满足题意的点存在,设,由直线的方向向量得到关于的方程,解方程即可确定点F的位置.

()由菱形的性质可得:,结合三角形中位线的性质可知:,故

底面底面,故

,故平面

平面

()由题意结合菱形的性质易知

以点O为坐标原点,建立如图所示的空间直角坐标系

则:

设平面的一个法向量为,

则:

据此可得平面的一个法向量为

设直线与平面所成角为

.

()由题意可得:,假设满足题意的点存在,

据此可得:,即:,

从而点F的坐标为

据此可得:,

结合题意有:,解得:.

故点F中点时满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,第五组.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.

1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;

2)设m,n表示该班某两位同学的百米测试成绩,且已知求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列几个命题:①若,则;②,则互为相反数的否命题;③的逆命题;④,则互为倒数的逆否命题. 其中真命题的序号__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(xa2+y224a0)及直线lxy+30.当直线l被圆C截得的弦长为时,求

(Ⅰ)a的值;

(Ⅱ)求过点(35)并与圆C相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.

(1)求椭圆的方程;

(2)证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面.

(1)证明:平面

(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示。

(1)求居民月收入在[3000,3500)内的频率;

(2)根据频率分布直方图求出样本数据的中位数;

(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1an+1=,(nN*

1)求数列{an}的通项公式an

2)若数列{bn}满足bn=3n﹣1an,数列{bn}的前n项和为Tn,若不等式(﹣1nλTn对一切nN*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是椭圆的一个顶点,的短轴是圆的直径,直线过点P且互相垂直,交椭圆于另一点D交圆AB两点

求椭圆的标准方程;

面积的最大值.

查看答案和解析>>

同步练习册答案