精英家教网 > 高中数学 > 题目详情

【题目】求曲线y=x2﹣2x+3与直线y=x+3围成的图形的面积.

【答案】解:由 ,解得
∴曲线y=x2﹣2x+3及直线y=x+3的交点为(0,3)和(3,6)
因此,曲线y=x2﹣2x+3及直线y=x+3所围成的封闭图形的面积是
S= (x+3﹣x2+2x﹣3)dx=( x2 x3 =

【解析】联立解曲线y=x2﹣2x+3及直线y=x+3,得它们的交点是(0,3)和(3,6),由此可得两个图象围成的面积等于函数y=3x﹣x2在[0,3]上的积分值,根据定义分计算公式加以计算,即可得到所求面积.
【考点精析】利用定积分的概念对题目进行判断即可得到答案,需要熟知定积分的值是一个常数,可正、可负、可为零;用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足.数列满足,且

(1)求数列的通项公式;

(2)若,数列的前项和为,对任意的,都有,求实数的取值范围;

(3)是否存在正整数,使)成等差数列,若存在,求出所有满足条件的,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函数f(x)= cos2x
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈[0, ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列不等式:




照此规律,第五个不等式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示相等函数的一组是(
A.f(x)=1,g(x)=x0?
B.f(x)=|x|,g(t)=
C.f(x)= ,g(x)=x+1?
D.f(x)=lg(x+1)+lg(x﹣1),g(x)=lg(x2﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算,该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为: ,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.

(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为:

(1)把直线的参数方程化为极坐标方程,把曲线的极坐标方程化为普通方程;

(2)求直线与曲线交点的极坐标(≥0,0≤).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x﹣y+1=0,当x= 时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ +c是奇函数,且满足f(1)= ,f(2)=
(1)求a,b,c的值;
(2)试判断函数f(x)在区间(0, )上的单调性并证明.

查看答案和解析>>

同步练习册答案