(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,
E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
(Ⅰ)略
(Ⅱ)平面PAD和平面PBE所成二面角(锐角)的大小是
解法一(Ⅰ)如图所示,连结BD,由ABCD是菱形且∠BCD=60°知,
△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD,又AB∥CD,
所以BE⊥AB.又因为PA⊥平面ABCD,平面ABCD,所以
PA⊥BE.而AB=A,因此BE⊥平面PAB.
又平面PBE,所以平面PBE⊥平面PAB.
(Ⅱ)延长AD、BE相交于点F,连结PF.
过点A作AH⊥PB于H,由(Ⅰ)知
平面PBE⊥平面PAB,所以AH⊥平面PBE.
在Rt△ABF中,因为∠BAF=60°,
所以,AF=2AB=2=AP.
在等腰Rt△PAF中,取PF的中点G,连接AG.
则AG⊥PF.连结HG,由三垂线定理的逆定理得,
PF⊥HG.所以∠AGH是平面PAD和平面PBE所成二面角的平面角(锐角).
在等腰Rt△PAF中,
在Rt△PAB中,
所以,在Rt△AHG中,
故平面PAD和平面PBE所成二面角(锐角)的大小是
解法二: 如图所示,以A为原点,建立空间直角坐标系.则相关
各点的坐标分别是A(0,0,0),B(1,0,0),
P(0,0,2),
(Ⅰ)因为,
平面PAB的一个法向量是,
所以共线.从而BE⊥平面PAB.
又因为平面PBE,
故平面PBE⊥平面PAB.
(Ⅱ)易知
设是平面PBE的一个法向量,则由得
所以
设是平面PAD的一个法向量,则由得
所以故可取
于是,
故平面PAD和平面PBE所成二面角(锐角)的大小是
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com