精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
4x+k•2x+1
4x+2x+1
,若对于任意实数x1,x2,x3,均存在以f(x1),f(x2),f(x3)为三边边长的三角形,则实数k的取值范围是
-
1
2
≤k≤4
-
1
2
≤k≤4
分析:因对任意实数x1、x2、x3,都存在以f(x1)、f(x2)、f(x3)为三边长的三角形,则f(x1)+f(x2)>f(x3)对任意的x1、x2、x3∈R恒成立,将f(x)解析式用分离常数法变形,由均值不等式可得分母的取值范围,整个式子的取值范围由k-1的符号决定,故分为三类讨论,根据函数的单调性求出函数的值域,然后讨论k转化为f(x1)+f(x2)的最小值与f(x3)的最大值的不等式,进而求出实数k 的取值范围.
解答:解:因对任意实数x1、x2、x3,都存在以f(x1)、f(x2)、f(x3)为三边长的三角形,故f(x1)+f(x2)>f(x3)对任意的x1、x2、x3∈R恒成立.
f(x)=
4x+2x+1+(k-1)2x
4x+2x+1
=1+
k-1
2x+
1
2x
+1

令t=2x+
1
2x
+1≥3,则y=1+
k-1
t
(t≥3),
当k-1>0,即k>1时,该函数在[3,+∞)上单调递减,则y∈(1,
k+2
3
],
当k-1=0,即k=1时,y∈{1},
当k-1<0,即k<1时,该函数在[3,+∞)上单调递增,y∈[
k+2
3
,1),
当k>1时,∵2<f(x1)+f(x2)≤
2k+4
3
且1<f(x3)≤
k+2
3
,故
k+2
3
≤2,∴1<k≤4;
当k=1时,∵f(x1)=f(x2)=f(x3)=1,满足条件;
当k<1时,∵
2k+4
3
≤f(x1)+f(x2)<2,且
k+2
3
≤f(x3)<1,故
2k+4
3
≥1,∴-
1
2
≤k<1;
综上所述:-
1
2
≤k≤4.
故答案为:-
1
2
≤k≤4
点评:本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-
4+
1
x2
,数列{an},点Pn(an,-
1
an+1
)在曲线y=f(x)上(n∈N+),且a1=1,an>0.
( I)求数列{an}的通项公式;
( II)数列{bn}的前n项和为Tn且满足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
4-x2
在区间M上的反函数是其本身,则M可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4+ax-1(a>0且a≠1)的图象恒过定点P,则P点的坐标是
(1,5)
(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x
的定义域为A,B={x|2x+3≥1}.
(1)求A∩B;
(2)设全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),数列{an}满足an=f(n)(n∈N*),且{an}是单调递增数列,则实数a的取值范围(  )

查看答案和解析>>

同步练习册答案