精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函数f(x)的解析式;
(2)若函数g(x)= 画出函数g(x)图象;
(3)求函数g(x)在[﹣3,1]的最大值和最小值.

【答案】
(1)解:由题意:函数f(x)=x2+bx+c满足f(﹣3)=f(1),f(0)=﹣3.

则有:

解得:b=2,c=﹣3

∴函数f(x)的解析式为f(x)=x2+2x﹣3.


(2)解:由(1)可知b=2,c=﹣3,

函数g(x)=

g(x)=

图象如下图所示:


(3)解:由(2)中的图象可知:(﹣3,﹣1)是单调减区间,(﹣1,0)是单调增区间

(0,1)是单调减区间

则:g(1)=﹣4,g(﹣1)=﹣4,g(﹣3)=0

∴函数g(x)在[﹣3,1]的最大值为0,最小值为﹣4.


【解析】(Ⅰ)函数f(x)=x2+bx+c,f(﹣3)=f(1),f(0)=﹣3,带入求b,c的值可得f(x)的解析式;(Ⅱ)求出g(x)的表达式,在画图象.(Ⅱ)数形结合法,根据图象求[﹣3,1]的最大值和最小值.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,且S4=4S2a2n=2an+1.

(1)求数列{an}的通项公式;

(2)设数列{bn}的前n项和为Tn,且,令cnb2n(nN*),求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中
①函数f(x)=( x的递减区间是(﹣∞,+∞);
②若函数f(x)= ,则函数定义域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(Ⅰ)设为曲线上任意一点,求的取值范围;

(Ⅱ)若直线与曲线交于两点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x),对任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,则(
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x﹣log2x,0<a<b<c,f(a)f(b)f(c)<0,实数d是函数f(x)的一个零点.给出下列四个判断:
①d>a;②d>b;③d<c;④d>c.其中可能成立的是(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=2x2﹣4x.
(1)指出图象的开口方向、对称轴方程、顶点坐标;
(2)用描点法画出它的图象;
(3)求出函数的最值,并分析函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,且,函数的图象与直线相切.

(1)求的解析式;

(2)若当时, 恒成立,求实数的取值范围;

(3)是否存在区间,使得在区间上的值域恰好为?若存在,请求出区间,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案