【题目】设函数f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函数f(x)的解析式;
(2)若函数g(x)= 画出函数g(x)图象;
(3)求函数g(x)在[﹣3,1]的最大值和最小值.
【答案】
(1)解:由题意:函数f(x)=x2+bx+c满足f(﹣3)=f(1),f(0)=﹣3.
则有:
解得:b=2,c=﹣3
∴函数f(x)的解析式为f(x)=x2+2x﹣3.
(2)解:由(1)可知b=2,c=﹣3,
函数g(x)=
g(x)= .
图象如下图所示:
(3)解:由(2)中的图象可知:(﹣3,﹣1)是单调减区间,(﹣1,0)是单调增区间
(0,1)是单调减区间
则:g(1)=﹣4,g(﹣1)=﹣4,g(﹣3)=0
∴函数g(x)在[﹣3,1]的最大值为0,最小值为﹣4.
【解析】(Ⅰ)函数f(x)=x2+bx+c,f(﹣3)=f(1),f(0)=﹣3,带入求b,c的值可得f(x)的解析式;(Ⅱ)求出g(x)的表达式,在画图象.(Ⅱ)数形结合法,根据图象求[﹣3,1]的最大值和最小值.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且,令cn=b2n(n∈N*),求数列{cn}的前n项和Rn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中
①函数f(x)=( )x的递减区间是(﹣∞,+∞);
②若函数f(x)= ,则函数定义域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正确命题的序号为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.
(Ⅰ)设为曲线上任意一点,求的取值范围;
(Ⅱ)若直线与曲线交于两点, ,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x),对任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,则( )
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=( )x﹣log2x,0<a<b<c,f(a)f(b)f(c)<0,实数d是函数f(x)的一个零点.给出下列四个判断:
①d>a;②d>b;③d<c;④d>c.其中可能成立的是(填序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=2x2﹣4x.
(1)指出图象的开口方向、对称轴方程、顶点坐标;
(2)用描点法画出它的图象;
(3)求出函数的最值,并分析函数的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数且,且,函数的图象与直线相切.
(1)求的解析式;
(2)若当时, 恒成立,求实数的取值范围;
(3)是否存在区间,使得在区间上的值域恰好为?若存在,请求出区间,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com