精英家教网 > 高中数学 > 题目详情
5.某地区100位居民的人均月用水量(单位:t)的频率分布直方图及频数分布表如下:
分组频数
[0,0.5)4
[0.5,1)8
[1,1.5)15
[1.5,2)22
[2,2.5)25
[2.5,3)14
[3,3.5)6
[3.5,4)4
[4,4.5)2
合计100
(1)根据频率分布直方图估计这组数据的众数与平均数;
(2)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?

分析 (1)频率最大的组的组中值,即为众数,累加各组组中与频率的乘积,可得平均数;
(2)累加月均用水量在3t以上的频率,进而得到月均用水量在3t以下的频率,可得结合.

解答 解:(1)由图知,这组数据的众数为2.25,
平均数
为0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02;
(2)人均月用水量在3t以上的居民的比例为6%+4%+2%=12%,
即大约是有12%的居民月均用水量在3t以上,
88%的居民月均用水量在3t以下,
因此,政府的解释是正确的.

点评 本题考查的知识点是频率分布直方图,频率分布直方表,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.圆C:x2+y2=1关于直线l:x+y=1对称的圆的标准方程为(x-1)2+(y+1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设过曲线f(x)=-ex-x(e为自然对数的底数)上的任意一点的切线l1,总存在过曲线g(x)=mx-3sinx上的一点处的切线l2,使l1⊥l2,则m的取值范围为[-2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.化简:log7[7-2×($\frac{1}{7}$)2]=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的首项为c,公差为d,等比数列{bn}的首项为d,公比为c,其中c,d∈Z,且a1<b1<a2
b2<a3
(1)求证:0<c<d,并由b2<a3推导c的值;
(2)若数列{an}共有3n项,前n项的和为A,其后的n项的和为B,再其后的n项的和为C,求$\frac{{B}^{2}-AC}{(A-C)^{2}}$的比值.
(3)若数列{bn}的前n项,前2n项、前3n项的和分别为D,G,H,试用含字母D,G的式子来表示H(即H=f(D,G),且不含字母d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=xk,x∈R,k为常数.
(Ⅰ)当k=3时,判断函数f(x)的奇偶性,并说明理由;
(Ⅱ)当k=1时,设函数g(x)=f(x)+$\frac{4}{f(x)}$,判断函数g(x)在区间(0,2]上的单调性,利用函数单调性的定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线y2=4x的焦点为F,过点F且倾斜角为45°的直线l与抛物线分别交于A、B两点,则|AB|=(  )
A.3B.6C.8D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}+2\overrightarrow{b}=0$,($\overrightarrow{a}+\overrightarrow{b}$)$•\overrightarrow{a}$=2,则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知m>e>n>1>k>0(e为自然数2.7…),且x=m${\;}^{\frac{1}{e}}$,y=lnn,z=logke,则(  )
A.x>y>zB.x>z>yC.y>x>zD.y>z>x

查看答案和解析>>

同步练习册答案