精英家教网 > 高中数学 > 题目详情

【题目】如图1,在平行四边形中,,以对角线为折痕把折起,使点到图2所示点的位置,使得.

(Ⅰ)求证:平面平面

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)见解析; (Ⅱ).

【解析】

(Ⅰ)在图1中,求解三角形可得AB⊥BD,同理CD⊥BD,图2中,在△PAD中,求解三角形可得AD⊥PD,结合PD⊥BD,得到PD⊥平面ABD,进一步得到PD⊥AB,
AB⊥BD,可得AB⊥平面PBD,由面面垂直的判定可得平面PAB⊥平面PBD;
(Ⅱ)以D为坐标原点,分别以DB,DP所在直线为y,z轴,过点D在平面ABD内平行于AB的直线为x轴建立空间直角坐标系,分别求出平面PAD与平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角B-PA-D的余弦值.

(Ⅰ)图1中,

由余弦定理得

,∴

同理.

图2中,在中,

,∴,即

,∴平面.

平面,∴

.∴平面平面

∴平面平面.

(Ⅱ)如图,以为坐标原点,所在直线分别为轴,

过点在平面内平行于的直线为轴建立空间直角坐标系.

设平面的法向量为

,得平面的一个法向量为

同理可得平面的一个法向量

.

又二面角的平面角为锐角,

所以,二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的一系列对应值如下表:

1)根据表格提供的数据求函数的一个解析式;

2)根据(1)的结果,若函数周期为,当时,方程 恰有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.回归直线至少经过其样本数据中的一个点

B.从独立性检验可知有99%的把握认为吃地沟油与患胃肠癌有关系时,我们就说如果某人吃地沟油,那么他有99%可能患胃肠癌

C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

D.将一组数据的每一个数据都加上或减去同一个常数后,其方差也要加上或减去这个常数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中.

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C1的极坐标方程是,在以极点为原点O,极轴为x轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy中,曲线C2的参数方程为θ为参数).

1)求曲线C1的直角坐标方程与曲线C2的普通方程;

2)将曲线C2经过伸缩变换后得到曲线C3,若MN分别是曲线C1和曲线C3上的动点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某年级位同学参加语文和数学两门课的考试,每门课的考分从0100. 假如考试的结果没有两位同学的成绩是完全相同的(即至少有一门课的成绩不同). 另外,“甲比乙好”是指同学甲的语文和数学的考分均分别高于同学乙的语文和数学的考分. 试问:当最小为何值时,必存在三位同学(设为甲、乙、丙),有甲比乙好,乙比丙好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知数列是首项为1,公比为2的等比数列,数列的前项和

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为8,其短轴的两个端点与长轴的一个端点构成正三角形。

(1)求的方程;

(2)设的左焦点,为直线上任意一点,过点的垂线交于两点,.

(i)证明:平分线段(其中为坐标原点);

(ii)当取最小值时,求点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnxx2+axg(x)=exe,其中a0.

(1)若a1,证明:f(x)≤0

(2)用max{mn}表示mn中的较大值,设函数h(x)=max{f(x),g(x)},讨论函数h(x)在(0+∞)上的零点的个数.

查看答案和解析>>

同步练习册答案