精英家教网 > 高中数学 > 题目详情
已知
a
=(1,sinθ),
b
=(1,cosθ),(θ∈R)
(1)若
a
+
b
=(2,0)
,求sin2θ+2sinθcosθ得值.
(2)若
a
-
b
=(0,
1
5
),求sinθ+cosθ得值.
分析:(1)首先利用向量求出sinθ+cosθ=0,然后对所求的式子除以“1”把“1“写成sin2θ+cos2θ=1,再分子分母同除以cos2θ,即可求出结果.
(2)首先利用向量求出sinθ-cosθ,然后利用sin2θ+cos2θ=1,求出2sinθcosθ,进而得到(sinθ+cosθ)2,即可取出结果.
解答:解:(1)∵
a
+
b
=(2,sinθ+cosθ)=(2,0)
∴sinθ+cosθ=0(2分)
sin2θ+2sinθcosθ=
sin2θ+2sinθcosθ
sin2θ+cos2θ
=
tan2θ+2tanθ
tan2θ+1
=
1-2
2
=-
1
2
(5分)
(2)∵
a
-
b
=(0,sinθ-cosθ)=(0,
1
5
)∴sinθ-cosθ=
1
5
,(6分)
1-2sinθcosθ=
1
25
即2sinθcosθ=
24
25
,(8分)
(sinθ+cosθ)2=1+2sinθcosθ=1+
24
25
=
49
25
∴sinθ+cosθ=±
7
5
(10分)
点评:本题利用向量来考查三角函数的化简求值,本题的关键是利用sin2θ+cos2θ=1,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(1,sinα),
b
=(2,sin(α+2β)),
a
b

(1)若sinβ=
3
5
,β是钝角,求tanα的值;
(2)求证:tan(α+β)=3tanβ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,sinα,cosα),
b
=(-1,sinα,cosα)分别是直线l1、l2的方向向量,则直线l1、l2的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,sinα),
b
=(cosα,-1),且
a
b
,则锐角α的大小为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(1,sinα),
b
=(2,sin(α+2β)),
a
b

(1)若sinβ=
3
5
,β是钝角,求tanα的值;
(2)求证:tan(α+β)=3tanβ.

查看答案和解析>>

同步练习册答案