精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人各进行次射击,甲每次击中目标的概率为,乙每次击中目标的概率

(Ⅰ)记甲击中目标的次数为,求的概率分布及数学期望;

(Ⅱ)求甲恰好比乙多击中目标次的概率.

【答案】1)分布列(见解析),Eξ=1.5;(2.

【解析】

试题(1)因甲每次是否击中目标相互独立,所以ξ服从二项分布,即,由期望(二项分布);(2)甲恰好比乙多击中目标2次:分为2类,甲3次乙1次,甲2次乙0.甲乙相互独立概率相乘.

试题解析:

甲射击三次其集中次数ξ服从二项分布:

(1)P(ξ0)P(ξ1)

P(ξ2)P(ξ3)4

ξ

0

1

2

3

P





ξ的概率分布如下表:

8

2)甲恰好比乙多击中目标2次:分为2类,甲3次乙1次,甲2次乙0.甲乙相互独立概率相乘.

. 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为.

1)求的值;

2)试推断方程是否有实数解?若有实数解,请求出它的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是(  )

A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”

B.x=-1”是“x2-5x-6=0”的必要不充分条件

C.命题“若xy,则sin x=sin y”的逆否命题为真命题

D.命题“x0∈R使得”的否定是“x∈R,均有x2x+1<0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于,,使得成立,则称集合M是“互垂点集”.给出下列四个集合:;;;.其中是“互垂点集”集合的为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:首项为且公比为正数的等比数列为数列”.

(Ⅰ)已知等比数列)满足:,判断数列是否为数列

(Ⅱ)设为正整数,若存在数列 ),对任意不大于的正整数,都有成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.

()分别为椭圆的左、右焦点,且直线轴,求四边形的面积;

()若直线的斜率存在且不为0,四边形为平行四边形,求证:;

()()的条件下,判断四边形能否为矩形,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的右焦点为,点分别是椭圆的上、下顶点,点是直线上的一个动点(与轴的交点除外),直线交椭圆于另一个点.

(1)当直线经过椭圆的右焦点时,求的面积;

(2)①记直线的斜率分别为,求证:为定值;

②求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,有以下三个结论:

①函数恒有两个零点,且两个零点之积为

②函数的极值点不可能是

③函数必有最小值.

其中正确结论的个数有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,过坐标原点作两条互相垂直的射线与椭圆分别交于两点.

1)证明:当取得最小值时,椭圆的离心率为.

2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案