精英家教网 > 高中数学 > 题目详情
6.已知f(x)=(x-a)(x-b)-2,(a<b)的两个零点分别为α,β,(α<β)则(  )
A.a<α<b<βB.α<a<b<βC.a<α<β<bD.α<a<β<b

分析 可设g(x)=(x-a)(x-b),从而得到a,b是函数g(x)的两个零点,可看出f(x)的图象是由g(x)的图象向下平移2个单位得到,从而便可得出α<a<b<β.

解答 解:设g(x)=(x-a)(x-b),则a,b是g(x)的两个零点;
函数f(x)的图象可以看成g(x)图象向下平移2个单位得到,且a<b,α<β,如图所示:

∴α<a<b<β.
故选B.

点评 考查函数零点的概念,以及沿y轴方向的平移变换,要熟悉二次函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如左图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=$\sqrt{x}$-alnx,a∈R
(1)若a=2,求f(x)的最值;
(2)若f(x)存在最小值,求其最小值g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$a+\frac{1}{a}=7$,则${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$=(  )
A.3B.9C.-3D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数$f(x)=\left\{\begin{array}{l}{3^x},x≤0\\|{log_3}x|,x>0\end{array}\right.$,则f(f(-1))的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(Ⅰ)计算0.0081${\;}^{\frac{1}{4}}$+(4${\;}^{-\frac{3}{4}}$)2+($\sqrt{8}$)${\;}^{-\frac{4}{3}}$-16-0.75的值.
(Ⅱ)计算lg25+lg2lg50+2${\;}^{1+lo{g}_{2}5}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设命题p:x2+2x-3<0 q:-5≤x<1,则命题p成立是命题q成立的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知tanx=-1,且cosx=-$\frac{\sqrt{2}}{2}$,求x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=x+$\frac{1}{x-1}$(x>1)在x=a处取最小值,则实数a=2.

查看答案和解析>>

同步练习册答案