精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆)和圆,已知圆将椭圆的长轴三等分,椭圆右焦点到右准线的距离为,椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点

(1)求椭圆的方程;

(2)若直线分别与椭圆相交于另一个交点为点.

①求证:直线经过一定点;

②试问:是否存在以为圆心,为半径的圆,使得直线和直线都与圆相交?若存在,请求出实数的范围;若不存在,请说明理由。

【答案】1;(2详见解析;存在,.

【解析】

试题(1)由圆C2将椭圆C1的长轴三等分,可得;又椭圆C1右焦点到右准线的距离为,可得,及a2=b2+c2即可得出;(2由题意知直线PEME的斜率存在且不为0,设直线PE的斜率为k,则PEy=kx-1,与椭圆的方程联立可得点P的坐标,同理可得点M的坐标,进而得到直线PM的方程,可得直线PM过定点.

由直线PE的方程与圆的方程联立可得点A的坐标,进而得到直线AB的方程.假设存在圆心为(m0),半径为的圆G,使得直线PM和直线AB都与圆G相交,则圆心到二直线的距离都小于半径.即(i,(ii.得出m的取值范围存在即可.

试题解析:()依题意,,则

,又,则

椭圆方程为

2由题意知直线的斜率存在且不为0,设直线的斜率为,则

去代,得

方法1

,即

直线经过定点

方法2:作直线关于轴的对称直线,此时得到的点关于轴对称,则相交于轴,可知定点在轴上,

时,,此时直线经过轴上的点

三点共线,即直线经过点

综上所述,直线经过定点

则直线

,则,直线,直线

假设存在圆心为,半径为的圆,使得直线和直线都与圆相交,

由()得恒成立,则

由()得,恒成立,

时,不合题意;当时,,得,即

存在圆心为,半径为的圆,使得直线和直线都与圆相交,所有的取值集合为

解法二:圆,由上知过定点,故;又直线过原点,故,从而得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了组数据作为研究对象,如下图所示((吨)为该商品进货量, (天)为销售天数):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

Ⅰ)根据上表数据在下列网格中绘制散点图;

Ⅱ)根据上表提供的数据,求出关于的线性回归方程

(Ⅲ)在该商品进货量(吨)不超过6(吨)的前提下任取两个值,求该商品进货量x(吨)恰有一个值不超过3(吨)的概率.

参考公式和数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心在直线上,且经过点A-30),B12).

(1)求圆M的方程;

2)直线与圆M相切,且y轴上的截距是x轴上截距的两倍,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于20尺,该女子所需的天数至少为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1,直线l过点M(﹣1,0),与椭圆C交于A,B两点,交y轴于点N.
(1)设MN的中点恰在椭圆C上,求直线l的方程;
(2)设 ,试探究λ+μ是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}前n项和为Sn , 且 (n∈N*).
(Ⅰ) 求c,an
(Ⅱ) 若 ,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为的中点.

(1)求证:直线平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 ,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范围.
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知函数f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.

查看答案和解析>>

同步练习册答案