精英家教网 > 高中数学 > 题目详情
将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成四面体ABCD,点E、F
分别为AC、BD的中点,则下列命题中正确的是           。(将正确的命题序号全填上)
①EF∥AB                                  ②EF与异面直线AC与BD都垂直
③当四面体ABCD的体积最大时,AC=     ④AC垂直于截面BDE
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,侧面为等边三角形,侧棱

(Ⅰ)求证:
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图一,平面四边形关于直线对称,
沿折起(如图二),使二面角的余弦值等于.对于图二,
(Ⅰ)求
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在体积为1的三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P为线段AB上的动点.

(1)求证:CA1⊥C1P;
(2)当AP为何值时,二面角C1-PB1-A1的大小为?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)正方体的棱长为的交点,上一点,且
(1)求证:平面; (2)求异面直线所成角的余弦值;
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如左图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下:
(1)求二面角B-AC-D的大小;
(2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 如图,在三棱锥中,的中点.
(1)求证:
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)
如图,在多面体中,四边形是正方形,
.
(1)求二面角的正切值;
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三个平面,若,且相交但不垂直,分别为内的直线,则(▲)              
A.B.C.D.

查看答案和解析>>

同步练习册答案