精英家教网 > 高中数学 > 题目详情
某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为(  )
A、1B、2C、3D、4
考点:函数的最值及其几何意义
专题:应用题
分析:因是选择题,可进行分步计算,用42=9+11+11+11易得.
解答:解:∵原价是:48×42=2016(元),
2016×0.6=1209.6(元),
∵每张订单金额(6折后)满300元时可减免100,
∴若分成10,10,11,11,
由于48×10=480,480×0.6=288,
达不到满300元时可减免100,
∴应分成9,11,11,11.
∴只能减免3次,
故答案选:C.
点评:本题是一道应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|y=
x-x2
},B={y|y=x-x2},则A∩B=(  )
A、[0,1]
B、(-∞,1]
C、[0,
1
4
]
D、[0,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|
x-1
3-x
>0},B={x|y=
4-2x
},则A∩B=(  )
A、(1,2)
B、(2,3)
C、[2,3)
D、(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半径为1的圆O与等边三角形ABC夹在两平行直线l1,l2之间,l∥l1与圆相交于F,G两点.与三角形ABC两边交于E,D两点,设弧
FmG
的长为x(0<x<2π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图形大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为l的函数y=f(x),如果存在区间[m,n]⊆l,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n],f(x)的值域也是[m,n],则称[m,n]是函数y=f(x)的“好区间”,已知函数P(x)=
(t2+t)x-1
t2x
(t∈R,t≠0)有“好区间[m,n],则当t变化时,n-m的最大值是”(  )
A、
2
3
3
B、
3
3
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-2x3-x,若x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值(  )
A、大于零B、小于零C、等于零D、大于零或小于零

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数x,符号[x]表示不超过x的最大整数,如:[1]=1,[1.5]=1,[-1.5]=-2,则[log21]+[log22]+[log23]+[log24]+…+[log232]=(  )
A、103B、104C、128D、129

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是(  )
A、(2,+∞)B、(1,+∞)C、(-∞,-2)D、(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(-1)nsin
πx
2
+2n,x∈[2n,2n+1)
(-1)n+1sin
πx
2
+2n+2,x∈[2n+1,2n+2)
,(n∈N),则f(1)-f(2)+f(3)-f(4)+…+f(2013)-f(2014)=
 

查看答案和解析>>

同步练习册答案