精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.

【答案】
(1)解:∵A= ,∴由余弦定理可得: ,∴b2﹣a2= bc﹣c2

又b2﹣a2= c2.∴ bc﹣c2= c2.∴ b= c.可得

∴a2=b2 = ,即a=

∴cosC= = =

∵C∈(0,π),

∴sinC= =

∴tanC= =2.


(2)解:∵ = × =3,

解得c=2

=3


【解析】(1)由余弦定理可得: ,已知b2﹣a2= c2 . 可得 ,a= .利用余弦定理可得cosC.可得sinC= ,即可得出tanC= .(2)由 = × =3,可得c,即可得出b.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设G为△ABC的重心,过G作直线l分别交线段AB,AC(不与端点重合)于P,Q.若

(1)求 的值;
(2)求λμ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数{an}:a1=t,n2Sn+1=n2(Sn+an)+an2 , n=1,2,….
(1)设{an}为等差数列,且前两项和S2=3,求t的值;
(2)若t= ,证明: ≤an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (k>0).
(1)若f(x)>m的解集为{x|x<﹣3或x>﹣2},求不等式5mx2+ x+3>0的解集;
(2)若存在x>3使得f(x)>1成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的个数是( )

①函数的零点有2个;

②函数的最小正周期是

③命题“函数处有极值,则”的否命题是真命题;

.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.

优秀人数

非优秀人数

总计

甲班

乙班

30

总计

60

(Ⅰ)根据题目完成列联表,并据此判断是否有的把握认为环保知识成绩优秀与学生的文理分类有关.

(Ⅱ)现已知 三人获得优秀的概率分别为 ,设随机变量表示 三人中获得优秀的人数,求的分布列及期望

附:

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三棱锥的三视图如下图所示,则该几何体的体积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn=an3n(x∈R).求数列{bn}前n项和的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过的动圆恒与轴相切,设切点为是该圆的直径.

(Ⅰ)求点轨迹的方程;

(Ⅱ)当不在y轴上时,设直线与曲线交于另一点,该曲线在处的切线与直线交于点.求证: 恒为直角三角形.

查看答案和解析>>

同步练习册答案