精英家教网 > 高中数学 > 题目详情

【题目】某石雕构件的三视图如图所示,该石雕构件最中间的镂空部分是一个独特的几何体——牟合方盖(在一个立方体内作两个互相垂直的内切圆柱,其相交的部分),其体积(其中为最大截面圆的直径).若三视图中网格纸上小正方形的边长为1,则该石雕构件的体积为( )

A.B.C.D.

【答案】C

【解析】

由题意可得该石雕构件外面为正方体,边长为5,中间为牟合方盖,求得中间截面圆的半径,运用正方体和牟合方盖、圆柱的体积公式,计算可得所求值.

由题意可得该石雕构件外面为正方体,边长为5,中间为牟合方盖,

俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,

好似两个扣合(牟合)在一起的方形伞(方盖).

∴其正视图和侧视图是一个圆,其半径为

则该石雕构件的体积为

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当函数内有且只有一个极值点,求实数的取值范围;

2)若函数有两个不同的极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数).证明:

1存在唯一的极值点;

2有且仅有两个实根,且两个实根互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ).

1)若展开式中第5项与第7项的系数之比为38,求k的值;

2)设),且各项系数互不相同.现把这个不同系数随机排成一个三角形数阵:第11个数,第22个数,,第nn个数.设是第i列中的最小数,其中,且i.记的概率为.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程在平面直角坐标系中,曲线为参数),在以平面直角坐标系的原点为极点轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线.

(1)求曲线的普通方程以及曲线的平面直角坐标方程;

(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A、B两人进行一局围棋比赛,A获得的概率为0.8,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计B获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5,6,7表示A获胜;8,9表示B获胜,这样能体现A获胜的概率为0.8.因为采用三局两胜制,所以每3个随机数作为一组.

例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751,据此估计B获胜的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用一个平行于底面的截面去截一个正棱锥,截面和底面间的几何体叫正棱台.如图,在四棱台中,分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)若侧棱所在直线与上下底面中心的连线所成的角为,求直线与平面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,,点E上,且,将三角形沿线段折起到的位置,(如图2.

(Ⅰ)求证:平面平面

(Ⅱ)在线段上存在点F,满足,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年新型冠状病毒肺炎蔓延全国,作为主要战场的武汉,仅用了十余天就建成了小汤山模式的火神山医院和雷神山医院,再次体现了中国速度.随着疫情发展,某地也需要参照小汤山模式建设临时医院,其占地是出一个正方形和四个以正方形的边为底边、腰长为400m的等腰三角形组成的图形(如图所示),为使占地面积最大,则等腰三角形的底角为(

A.B.C.D.

查看答案和解析>>

同步练习册答案