【题目】已知函数,当时,取得极小值.
(1)求的值;
(2)记,设是方程的实数根,若对于定义域中任意的,.当且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
(3)设直线,曲线.若直线与曲线同时满足下列条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线与曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
【答案】(1),;(2)答案见解析;(3)证明见解析.
【解析】
(1)由题意可得,,据此可得的值,然后验证所得的结果满足题意即可;(2)首先由函数的单调性确定的值,然后求得函数的最大值和最小值,结合恒成立的条件即可确定的值; (3)由题意首先证得直线与曲线相切且至少有两个切点,然后令,,易证明,据此即可证明直线是曲线的“上夹线”.
(1)由已知,于是得:,
代入可得:,.
此时,.所以.
当时,;当时,.
所以当时,取得极小值,即,符合题意.
(2),则.所以单调递增,又.
为的根,即,也即.
,.
,
所以存在这样最小正整数使得恒成立.
(3)由,得 ,
当时,.
此时,
所以是直线与曲线的一个切点,
当,此时,.
所以也是直线与曲线的一个切点,
即直线与曲线相切且至少有两个切点,
对任意,.
即,因此直线是曲线的“上夹线”.
科目:高中数学 来源: 题型:
【题目】某市有一特色酒店由一些完全相同的帐篷构成.每座帐篷的体积为立方米,且分上下两层,其中上层是半径为(单位:米)的半球体,下层是半径为米,高为米的圆柱体(如图).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元,设每座帐篷的建造费用为千元.
参考公式:球的体积,球的表面积,其中为球的半径.
(1)求关于的函数解析式,并指出该函数的定义域;
(2)当半径为何值时,每座帐篷的建造费用最小,并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 下列结论错误的是
A. 命题:“若,则”的逆否命题是“若,则”
B. “”是“”的充分不必要条件
C. 命题:“, ”的否定是“, ”
D. 若“”为假命题,则均为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆()的左、右焦点为,右顶点为,上顶点为.已知.
(1)求椭圆的离心率;
(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,点满足,记点的轨迹为.斜率为的直线过点,且与轨迹相交于两点.
(1)求轨迹的方程;
(2)求斜率的取值范围;
(3)在轴上是否存在定点,使得无论直线绕点怎样转动,总有成立?如果存在,求出定点;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,∥,,平面平面,且.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)已知点在棱上,且异面直线与所成角的余弦值为,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com