精英家教网 > 高中数学 > 题目详情
已知正六棱锥P-ABCDEF的底面边长为1cm,侧面积为3cm2,则该棱锥的体积为
3
4
3
4
cm3
分析:根据题意,过O作边AB的垂线,垂足为Q,则可得六棱锥的斜高,通过正六棱锥的侧面积,求出斜高,求出棱锥的高,即可求出体积.
解答:解:S-ABCDEF为正六棱锥,O是底面正六边形ABCDEF的中心.
连接OA、OB、OS,过O作边AB的垂线,垂足为Q.则:
因为ABCDEF为正六边形,所以:△AOB为等边三角形.
所以:OA=OB=AB=1,又因为OQ⊥AB,所以:Q是AB中点
所以,AQ=BQ=
1
2

因为OP⊥面ABCDEF,所以:OP⊥OQ,
所以,△OPQ为直角三角形.在Rt△OPQ中,
1
2
×AB×PQ=
3
6

∴斜高PQ=1,
在直角三角形POQ中,高PO=
PQ2-OQ2
=
12-(
3
2
)
2
 
=
1
2

则该棱锥的体积为V=
1
3
×6×
3
4
×
1
2
=
3
4
cm3
故答案为:
3
4
点评:本题以正六棱锥为载体,考查棱锥的底面积,侧面积与体积的关系,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•九江一模)如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,AB=2,PA=2
2
,M是PA的中点.
(1)求证:平面PCD∥平面MBE;
(2)设PA=λAB,当二面角D-ME-F的大小为135°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•九江一模)如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,AB=2,PA=2
2
,M是PA的中点.
(1)求证:平面PCD∥平面MBE;
(2)求四棱锥M-BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,AB=2,PA=2,M是PA的中点.

(1)求证:平面PCD∥平面MBE;

(2)设PA=λAB,当二面角D﹣ME﹣F的大小为135°,求λ的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省南昌十九中高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,AB=2,PA=2,M是PA的中点.
(1)求证:平面PCD∥平面MBE;
(2)设PA=λAB,当二面角D-ME-F的大小为135°,求λ的值.

查看答案和解析>>

科目:高中数学 来源:2012年江西省九江市高考数学一模试卷(理科)(解析版) 题型:解答题

如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,AB=2,PA=2,M是PA的中点.
(1)求证:平面PCD∥平面MBE;
(2)设PA=λAB,当二面角D-ME-F的大小为135°,求λ的值.

查看答案和解析>>

同步练习册答案