精英家教网 > 高中数学 > 题目详情
已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1,令bn=
1anan+1
,数列{bn}的前n项和为Tn
(1)求数列{an}的通项公式及数列{bn}的前n项和为Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.
分析:(1)把等差数列的求和公式代入an2=S2n-1整理后可求得an,代入bn=
1
anan+1
利用裂项法求得Tn
(2)根据(1)中求得Tn分别表示出T1,Tm,Tn根据等比中项的性质建立等式,化简整理即可求得m的范围,进而根据m和n均为正整数求得m,进而n
解答:解:(1)因为{an}是等差数列,
a
2
n
=S2n-1=
(a1+a2n-1)(2n-1)
2
=(2n-1)an

又因为an≠0,所以an=2n-1,
bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

所以Tn=
1
2
(1-
1
3
+
1
3
-
1
5
++
1
2n-1
-
1
2n+1
)=
n
2n+1

(2)由(1)知,Tn=
n
2n+1

所以T1=
1
3
Tm=
m
2m+1
Tn=
n
2n+1

若T1,Tm,Tn成等比数列,则(
m
2m+1
)2=
1
3
(
n
2n+1
)

m2
4m2+4m+1
=
n
6n+3

m2
4m2+4m+1
=
n
6n+3

可得
3
n
=
-2m2+4m+1
m2

所以-2m2+4m+1>0,
从而:1-
6
2
<m<1+
6
2
,又m∈N,且m>1,
所以m=2,此时n=12.
故可知:当且仅当m=2,n=12使数列{Tn}中的T1,Tm,Tn成等比数列.
点评:本题主要考查了等差数列和等比数列的性质.考查了学生综合分析问题和实际运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)已知数列{an}中,若2an=an-1+an+1(n∈N*,n≥2),则下列各不等式中一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足数学公式(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:数学公式

查看答案和解析>>

科目:高中数学 来源:2010年北京市朝阳区高考数学一模试卷(理科)(解析版) 题型:解答题

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:

查看答案和解析>>

科目:高中数学 来源:2010年北京市朝阳区高考数学一模试卷(文科)(解析版) 题型:解答题

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:

查看答案和解析>>

同步练习册答案