精英家教网 > 高中数学 > 题目详情
将编号为1、2、3、4的四个小球放入甲、乙、丙三只盒子内.
(1)若三只盒子都不空,且3号球必须在乙盒内有多少种不同的放法;
(2)若1号球不在甲盒内,2号球不在乙盒内,有多少种不同放法.
分析:(1)1,2,4号的小球有两种不同的分法,可以分成1,1,1,或者1,2,这两种情况是互斥的,当三个球在三个盒子中全排列有A33种结果,当三个球分成两份,在甲和丙盒子中排列,共有C32A22种结果,相加得到结果.
(2)由题意知本题是一个分步计数问题,首先1号球不放在甲盒中,有2种放法,2号球不在乙盒,有2种结果,3和4号球有3种结果,相乘得到结果.
解答:解:(1)由题意知三只盒子都不空,且3号球必须在乙盒内,
其余的小球有两种不同的分法,可以分成1,1,1,或者1,2,这两种情况是互斥的,
当三个球在三个盒子中全排列有A33=6种结果,
当三个球分成两份,在甲和丙盒子中排列,共有C32A22=6种结果
∴由分类计数原理知共有6+6=12种结果.
(2)由题意知本题是一个分步计数问题,
∵首先1号球不放在甲盒中,有2种放法,
2号球不在乙盒,有2种结果,
3号球有3种结果
4号球有3种结果,
∴根据分步计数原理知共有2×2×3×3=36种结果,
答:(1)若三只盒子都不空,且3号球必须在乙盒内有12种不同的放法;
(2)若1号球不在甲盒内,2号球不在乙盒内,有36种不同放法.
点评:本题考查排列组合的实际应用,本题解题的关键是注意题目中有限制条件的元素的排法,先排列有限制条件的,本题是一个中档题目
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子,每个盒内放一个球,若恰好有两个球的编号与盒子编号相同,则不同的投放方法的种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某人随机地将编号为1,2,3的三个小球放入编号为1,2,3的三个盒子中,每个盒子放一个小球,全部放完.则编号为2的小球放入到编号为奇数的盒子中的概率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将编号为1、2、3的三个小球,放入编号为1、2、3、4的四个盒子中如果每个盒子中最多放一个球,那么不同的放球方法有
24
24
种;如果4号盒子中至少放两个球,那么不同的放球方法有
10
10
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

将编号为1,2,3,4的四个小球,分别放入编号为1,2,3,4的四个盒子,每个盒子中有且仅有一个小球.若小球的编号与盒子的编号相同,得1分,否则得0分.记ξ为四个小球得分总和.
(1)求ξ=2时的概率;
(2)求ξ的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某人随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,全部放完.
(1)求编号为奇数的小球放入到编号为奇数的盒子中的概率;
(2)当一个小球放到其中一个盒子时,若球的编号与盒子的编号相同时,称该球是“放对”的,否则称该球是“放错”的,求至多有2个球“放对”的概率.

查看答案和解析>>

同步练习册答案