精英家教网 > 高中数学 > 题目详情
2.(x+2)(1-$\frac{2}{x}$)4展开式的常数项为-6.

分析 利用二项式展开式,求出(x+2)(1-$\frac{2}{x}$)4展开式的常数项即可.

解答 解:∵(x+2)(1-$\frac{2}{x}$)4=(x+2)[1-${C}_{4}^{1}$•$\frac{2}{x}$+${C}_{4}^{2}$•${(\frac{2}{x})}^{2}$-${C}_{4}^{3}$•${(\frac{2}{x})}^{3}$+${C}_{4}^{4}$•${(\frac{2}{x})}^{4}$],
∴展开式的常数项为:
x•(-${C}_{4}^{1}$•$\frac{2}{x}$)+2×1=-6.
故答案为:-6.

点评 本题考查了利用二项式展开式求常数项的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直线l的倾斜角为30°,(结果化成一般式)
(1)若直线l过点P(3,-4),求直线l的方程.
(2)若直线l在x轴上截距为-2,求直线l的方程.
(3)若直线l在y轴上截距为3,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列命题:
①已知集合M满足∅?M⊆{1,2,3,4},且M中至多有一个偶数,这样的集合M有12个;
②已知函数f(x)满足条件:$f(x)+2f(\frac{1}{x})={log_2}x$,则f(2)等于-1;
③设A、B为非空集合,定义集合A+B={x|x∈A或x∈B且x∉A∩B},若$P=\{x|y=\sqrt{{x^2}-4x}\}$,Q={y|y=3x+1},则P+Q={x|x≤0或1<x≤4};
④如果函数y=f(x)的图象关于y轴对称,且f(x)=(x-2015)2+1(x≥0),则当x<0时,f(x)=(x+2015)2+1;
其中正确的命题的序号是②④(把所有正确的命题序号写在答题卷上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设n∈N,求证:
(1)$\sqrt{n+1}$-1<$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{n}}$<$\sqrt{n}$;
(2)$\frac{1}{2n+1}$<$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)满足f(cosx)=$\frac{1}{2}$x(0≤x≤π),则f(sin$\frac{4π}{3}$)=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,O为坐标原点,已知点M的坐标为(3,2),若点N(x,y)的坐标满足$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{2x+y≥6}\end{array}\right.$,求$\overrightarrow{OM}$•$\overrightarrow{ON}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.奇函数f(x)在其定义域(-1,1)内单调递增,且f(1-a)+f(1-a2)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若a?α,b?β,则a与b的位置关系是平行、相交、异面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lg($\sqrt{{x}^{2}+1}$-x)
(1)判断函数的奇偶性;
(2)判断函数的单调性.

查看答案和解析>>

同步练习册答案