精英家教网 > 高中数学 > 题目详情
16.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=5,则不等式exf(x)>4+ex的解集为(  )
A.(-∞,0)∪(0,+∞)B.(0,+∞)C.(-∞,0)∪(3,+∞)D.(-∞,0)

分析 构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,解出即可.

解答 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f′(x)+f(x>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)>ex+4,∴g(x)>4,
又∵g(0)=e0f(0)-e0=5-1=4,
∴g(x)>g(0),
∴x>0,
∴不等式的解集为(0,+∞)
故选:B.

点评 本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin($\frac{π}{3}$x+φ),(A>0,0<φ<$\frac{π}{2}$),y=f(x)的部分图象如图所示,P,Q分别为该图象上相邻的最高点和最低点,点P在x轴上的射影为R(1,0),cos∠PRQ=-$\frac{4}{5}$
(1)求A,φ的值;
(2)将函数f(x)的图象上所有的点向右平移θ(θ>0)个单位,得到函数g(x)的图象,若g(x)在区间[0,3]上单调递增,求θ的最小值
(3)求函数f(x)的单调增区间及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的通项公式an=$\frac{n+1}{n+2}$(n∈N+),设{an}的前n项积为sn,则使sn<$\frac{1}{32}$成立的自然数n(  )
A.有最大值62B.有最小值63C.有最大值62D.有最小值31

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出下列说法,其中说法正确的序号是②③.
①小于90°的角是第Ⅰ象限角;     ②若α是第Ⅰ象限角,则tanα>sinα;
③若f(x)=cos2x,|x2-x1|=π,则f(x1)=f(x2);
④若f(x)=sin2x,g(x)=cos2x,x1、x2是方程f(x)=g(x)的两个根,则|x2-x1|的最小值是π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在数列{an}中,Sn为它的前n项和,已知a2=4,a3=15,且数列{an+n}是等比数列,则Sn=3n-$\frac{{n}^{2}+n}{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<\frac{π}{2})$的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间$[-\frac{π}{4},\frac{π}{3}]$上的值域;
(Ⅲ)求函数g(x)=f(x-$\frac{π}{12}$)-f(x+$\frac{π}{12}$)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若数列{an}满足:存在正整数T,对于任意正整数n,都有an+T=an成立,则称数列{an}为周期数列,周期为T.己知数列{an}满足a1=m(m>0),an+1 =$\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,则下列命题正确的是①②③(写出所有正确命题的编号).
①若a3=4.则m可以取3个不同的值:
②若m=$\sqrt{2}$,则数列{an}是周期为3的数列:
③存在m>1,数列{an}是周期数列;
④对于任意的m∈Q且m≥2,数列{an}是周期数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}满足:a5=11,a2+a6=18
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+3n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=-xex
(1)求f(x)的单调区间,并判断它在各区间上是增函数还是减函数;
(2)求f(x)在[-2,0]上的最大值与最小值.

查看答案和解析>>

同步练习册答案