精英家教网 > 高中数学 > 题目详情
已知点P(x,y)满足
x≤1
y≤1
x+y-1≥0
,点Q在曲线y=
1
x
(x<0)
上运动,则|PQ|的最小值是(  )
A、
2
2
B、
2
C、
3
2
2
D、2
2
分析:作出可行域,将|PQ|的最小值转化为点Q(-1,-1)到可行域的点的距离的最小值,结合图形,求出点Q到直线AB的距离即为所求|PQ|的最小值.
解答:精英家教网解:如图,画出平面区域(阴影部分所示) 和曲线y=
1
x
(x<0)
,由Q(-1,-1)向直线x+y-1=0作垂线,Q(-1,-1)到直线x+y-1=0的距离为
|-1-1-1|
12+12
=
3
2
2
,所以可求得|PQ|的最小值是
3
2
2

故选C
点评:本题考查简单线性规划的应用、曲线方程的综合应用,解答的关键是数形结合求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P在直线2x-y+4=0上,且到x轴的距离是到y轴的距离的
23
倍,则点P的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是不等式组
y≤x-1
2x+y-3≤0
所表示的可行域内的一动点,则点P到抛物线x2=4y的焦点F的距离的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是椭圆
x2
16
+
y2
8
=1(x≠0,y≠0)上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且
F1M
MP
=0,则|
OM
|的取值范围是
(0,2
2
)
(0,2
2
)

查看答案和解析>>

科目:高中数学 来源:南京二模 题型:填空题

已知点P在直线2x-y+4=0上,且到x轴的距离是到y轴的距离的
2
3
倍,则点P的坐标是 ______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x0y0)在曲线f(xy)=0上,P也在曲线g(xy)=0上.

求证:P在曲线f(xy)+λg(xy)=0上(λR).

查看答案和解析>>

同步练习册答案