精英家教网 > 高中数学 > 题目详情
若椭圆的中心在原点,焦点在轴上,短轴的一个端点与左右焦点组成一个正三角形,焦点到椭圆上的点的最短距离为.
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,线段的中点为,求直线的斜率的取值范围.
(1) (2)

试题分析:(1)设椭圆的方程为 
所以,椭圆的方程为 ……1…5 分
(2)
当直线的斜率不存在时,的中点为,直线的斜率
当直线的斜率存在时,设其斜率为,直线的方程为:,……2
由12联立消去并整理得:
,则       ……10分
时,的中点为坐标原点,直线的斜率;      ……11 分
时,
 ……13 分
点评:直线与椭圆相交的问题常联立方程,结合韦达定理求解,在求解过程中要注意分直线斜率是否存在两种情况分别讨论,再应用均值不等式求得斜率最值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

方程表示曲线,给出以下命题:
①曲线不可能为圆;
②若,则曲线为椭圆;
③若曲线为双曲线,则
④若曲线为焦点在轴上的椭圆,则.
其中真命题的序号是_____(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的一个焦点的直线与椭圆交于两点,则 与椭圆的另一焦点构成,那么的周长是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正三角形AOB的顶点A,B在抛物线上,O为坐标原点,则(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的左右焦点为,P为双曲线右支上
的任意一点,若的最小值为8a,则双曲线的离心率的取值范围是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

与双曲线有共同的渐近线,且经过点的双曲线方程是              

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线经过抛物线的焦点F,且与抛物线相交于A、B两点.

(1)若,求点A的坐标;
(2)若直线的倾斜角为,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的准线与轴交于点,点在抛物线对称轴上,过可作直线交抛物线于点,使得,则的取值范围是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

同步练习册答案