精英家教网 > 高中数学 > 题目详情

【题目】已知长度为的线段的两个端点分别在轴和轴上运动,动点满足,设动点的轨迹为曲线.

1)求曲线的方程;

2)过点,且斜率不为零的直线与曲线交于两点,在轴上是否存在定点,使得直线的斜率之积为常数?若存在,求出定点的坐标以及此常数;若不存在,请说明理由.

【答案】12)存在两个定点,使得直线的斜率之积为常数,当定点为时,常数为,当定点为时,常数为

【解析】

1)设,利用向量关系坐标化,可得曲线的方程;

2)由题意设直线的方程为,假设存在定点,使得直线的斜率之积为常数,将表示成关于的函数,利用恒成立问题,可得定点坐标.

1)设

由于,所以

,所以.又因为,所以

从而,即曲线的方程为.

2)由题意设直线的方程为

,所以

.

假设存在定点,使得直线的斜率之积为常数,则

.

,且时,为常数,解得.

显然当时,常数为;当时,常数为.

所以存在两个定点,使得直线的斜率之积为常数,当定点为时,常数为,当定点为时,常数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分形几何学是数学家伯努瓦·曼得尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图甲所示的分形规律可得如图乙所示的一个树形图:记图乙中第行黑圈的个数为,则(1_______;(2______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,是等边三角形,四边形是等腰梯形,,平面平面.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称之为鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,以的中点O为球心,AC为直径的球面交PDM(异于点D),交PCN(异于点C.

1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.

(1)计算这10名学生的成绩的均值和方差;

(2)给出正态分布的数据:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.

由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,函数在区间的最小值为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求实数的值;

(2)令上的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,是二项式系数在三角形中的一种几何排列.中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现了杨辉三角.在欧洲,帕斯卡在1654年也发现了这一规律,所以这个表又叫做帕斯卡三角形.杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合.

0

1

1

1 1

2

1 2 1

3

1 3 3 1

4

1 4 6 4 1

5

1 5 10 10 5 1

6

1 6 15 20 15 6 1

1)记杨辉三角的前n行所有数之和为,求的通项公式;

2)在杨辉三角中是否存在某一行,且该行中三个相邻的数之比为?若存在,试求出是第几行;若不存在,请说明理由;

3)已知nr为正整数,且.求证:任何四个相邻的组合数不能构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的偶函数,且当时,.

1)当时,求的表达式:

2)求在区间的最大值的表达式;

3)当时,若关于x的方程a)恰有10个不同实数解,求a的取值范围.

查看答案和解析>>

同步练习册答案