精英家教网 > 高中数学 > 题目详情

【题目】已知不等式 恒成立,则实数 的取值范围是 ( )
A.
B.
C.
D.

【答案】A
【解析】设f(x)=x3+x2b,x∈(0,1],可得f′(x)=3x2+2x>0在(0,1]恒成立,可得f(x)在(0,1]递增,

f(1)取得最大值2b

,x∈(0,1],则

可得g′(x)0在(0,1]恒成立,g(x)在(0,1]递减,g(1)取得最小值3,则2b3,解得b1.

所以答案是:A.


【考点精析】本题主要考查了利用导数研究函数的单调性和函数的极值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1解关于的不等式

2在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】最新公布的《道路交通安全法》和《道路交通安全法实施条例》对车速、安全车距以及影响驾驶人反应快慢等因素均有详细规定,这些规定说到底主要与刹车距离有关,刹车距离是指从驾驶员发现障碍到制动车辆,最后完全停止所行驶的距离,即:刹车距离=反应距离+制动距离,反应距离=反应时间×速率,制动距离与速率的平方成正比,某反应时间为的驾驶员以的速率行驶,遇紧急情况,汽车的刹车距离为

)试将刹车距离表示为速率的函数.

)若该驾驶员驾驶汽车在限速为的公路上行驶,遇紧急情况,汽车的刹车距离为,试问该车是否超速?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知边长为的正方形与菱形所在平面互相垂直, 中点.

(1)求证: 平面

(2)若,求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下面三个类比结论:①向量 ,有 ;类比复数 ,有
②实数 ;类比向量 ,有
③实数 ,则 ;类比复数 ,有 ,则 .其中类比结论正确的命题个数为 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 有两个不相等的零点x1 , x2 , 则 + 的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某加油站20名员工日销售量的频率分布直方图,如图所示:

1)补全该频率分布直方图在[2030)的部分,并分别计算日销售量在 [1020),[2030)的员工数;

2)在日销量为[1030)的员工中随机抽取2人,求这两名员工日销量在 [2030)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,an=cos (n∈N*
(1)试将an+1表示为an的函数关系式;
(2)若数列{bn}满足bn=1﹣ (n∈N*),猜想an与bn的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数 ,若满足: ,都有 成立,则称 D上的有界函数,其中M称为函数 的上界.
(I)设 ,证明: 上是有界函数,并写出 所有上界的值的集合;
(II)若函数 上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案