精英家教网 > 高中数学 > 题目详情
.已知点A(-3,1,4),则点A关于原点的对称点B的坐标为            ;AB的长为           .
(3,-1,-4)    2

试题分析:由空间坐标系中点的对称原则:关于谁对称,谁不变;知点关于原点对称,各坐标全要变为原来的相反数,所以点B的坐标为(3,-1,-4);再由空间中两点间的距离公式得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P­ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)已知二面角A­PB­D的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:直三棱柱(侧棱⊥底面)ABC—A1B1C1中,∠ACB=90°,AA1=AC=1,BC=,CD⊥AB,垂足为D.

(1)求证:BC∥平面AB1C1;
(2)求点B1到面A1CD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中点。
(1)求证:AC⊥平面BDE;
(2)若直线PA与平面PBC所成角为30°,求二面角P-AD-C的正切值;
(3)求证:直线PA与平面PBD所成的角φ为定值,并求sinφ值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

证明平行四边形四条边的平方和等于两条对角线的平方和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知球的半径是1,三点都在球面上,两点和两点的球面距离都是两点的球面距离是,则二面角的大小是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(文科做)点B是A(3,7,-4)在xoz平面上的射影,则|
OB
|
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则(  )
A.EF至多与A1D,AC之一垂直
B.EF⊥A1D,EF⊥AC
C.EF与BD1相交
D.EF与BD1异面

查看答案和解析>>

同步练习册答案