精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率是,短轴的一个端点到右焦点的距离为,直线与椭圆交于两点.

(1)求椭圆的方程;

(2)当实数变化时,求的最大值;

(3)求面积的最大值.

【答案】(1);(2)有最大值;(3)面积的最大值为.

【解析】试题分析:由椭圆的离心率是,短轴的一个端点到右焦点的距离为,列出方程组,求出,由此能求出椭圆的方程;

联立直线方程和椭圆方程消去,求出的横坐标,代入直线方程求出对应的纵坐标,代入两点间的距离,求出

求出点到直线的距离,从而求得的面积的表达式,运用不等式计算求得结果

解析:(1)由题意得,得,从而

所以椭圆的方程为

(2)设,联立消去,整理得

由题意知

所以

所以

所以当且仅当时, 有最大值

(3)点到直线的距离为,从而的面积为

(当且仅当,即时,等号成立.)

所以面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.

(1)求证:ACBC=ADAE;
(2)若AF=2,CF=2 ,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,则a25﹣a1=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 的乘积成正比;② 当时,;③,其中为常数,且.

(1)设,求出的表达式,并求出的定义域;

(2)求出附加值的最大值,并求出此时的技术改造投入的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】统计表明,家庭的月理财投入(单位:千元)与月收入(单位:千元)之间具有线性相关关系.某银行随机抽取5个家庭,获得第)个家庭的月理财投入与月收入的数据资料,经计算得

(1)求关于的回归方程

(2)判断之间是正相关还是负相关;

(3)若某家庭月理财投入为5千元,预测该家庭的月收入.

附:回归方程的斜率与截距的最小二乘估计公式分别为:

,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在区间上的值域.

(1)求的值;

(2)若不等式上恒成立,求实数的取值范围;

(3)若函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线 =1(a>0,b>0)的右焦点F作渐近线的垂线,设垂足为P(P为第一象限的点),延长FP交抛物线y2=2px(p>0)于点Q,其中该双曲线与抛物线有一个共同的焦点,若 = + ),则双曲线的离心率的平方为( )
A.
B.
C.
+1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2+(a+1)x+a2(a∈R),若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和.

(1)求g(x)和h(x)的解析式;

(2)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求f(1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )

A. 依次成公比为2的等比数列,且

B. 依次成公比为2的等比数列,且

C. 依次成公比为的等比数列,且

D. 依次成公比为的等比数列,且

查看答案和解析>>

同步练习册答案