精英家教网 > 高中数学 > 题目详情
7.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上一点M到左焦点F1的距离是2,N是MF1的中点,O为坐标原点,则|ON|的值为(  )
A.4B.8C.3D.2

分析 首先根据椭圆的定义求出|MF2|=8的值,进一步利用三角形的中位线求得结果.

解答 解:根据椭圆的定义得:|MF2|=8,
由于△MF2F1中N、O是MF1、F1F2的中点,
根据中位线定理得:|ON|=4,
故选:A.

点评 本题考查的知识点:椭圆的定义,椭圆的方程中量的关系,三角形中位线定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”
C.已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件
D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l的参数方程为$\left\{\begin{array}{l}{x=-1+tcosa}\\{y=1+tsina}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=4cosθ.
(Ⅰ)若直线l的斜率为-1,求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π);
(Ⅱ)若直线l与曲线C相交弦长为$2\sqrt{3}$,求直线l的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下面的关系式中,正确的是(  )
A.0⊆{0}B.∅∈{0}C.∅=0D.∅⊆{0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,既是偶函数,又在(0,$\frac{π}{2}$)上单调递减的是(  )
A.y=cosxB.y=sinxC.y=tanxD.y=ex

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a∥b,b∩c=A,则a,c的位置关系是(  )
A.异面直线B.相交直线
C.平行直线D.相交直线或异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设log29=a,log35=b,用a,b的代数表示lg2=$\frac{2}{2+ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若cot(${\frac{3π}{2}$-θ)=$\frac{1}{2}$,则$\frac{{sin({3π-θ})+sin({\frac{3}{2}π+θ})}}{{cos({\frac{π}{2}+θ})+cos({π-θ})}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$f(x)=\left\{\begin{array}{l}{x^2}-3(x>0)\\ 1(x=0)\\ x+2(x<0)\end{array}\right.$,则f(f(f(-1)))=(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案