精英家教网 > 高中数学 > 题目详情

如图所示,已知正方形和矩形所在的平面互相垂直, 是线段的中点。

(1)证明:∥平面

(2)求异面直线所成的角的余弦值。

 

【答案】

(1)建立空间直角坐标系,用坐标表示点与向量,证明CM与平面BDF的法向量垂直,即可证得结论;

(2)

【解析】

试题分析:(1)证明:建立如图所示的空间直角坐标系,则…(2分)

设平面DBF的一个法向量为,则

得平面DBF的一个法向量为,…(6分)

因为

所以

又因为直线CM?平面DBF内,所以CM∥平面BDF.…(6分)

(2)结合上一问可知求异面直线所成的角的余弦值,只要确定出向量AM和向量DE的坐标即可,结合平面向量的夹角公式来得到为

考点:线面平行,异面直线的角

点评:本题考查线面平行,考查面面角,解题的关键是建立空间直角坐标系,用坐标表示点与向量,利用向量的数量积求解

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1
,M是线段EF的中点.
(1)证明:CM∥平面DFB
(2)求异面直线AM与DE所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)如图所示,已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角BD折起,得到三棱锥A-BCD.
(1)求证:平面AOC⊥平面BCD;
(2)若三棱锥A-BCD的体积为
6
3
,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丰台区二模)如图所示,已知正方形ABCD的边长为1,以A为圆心,AD长为半径画弧,交BA的延长线于P1,然后以B为圆心,BP1长为半径画弧,交CB的延长线于P2,再以C为圆心,CP2长为半径画弧,交DC的延长线于P3,再以D为圆心,DP3长为半径画弧,交AD的延长线于P4,再以A为圆心,AP4长为半径画弧,…,如此继续下去,画出的第8道弧的半径是
8
8
,画出第n道弧时,这n道弧的弧长之和为
n(n+1)π
4
n(n+1)π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:

(1)AM∥平面BDE;

(2)AM⊥平面BDF.

查看答案和解析>>

同步练习册答案