精英家教网 > 高中数学 > 题目详情

【题目】已知中,角所对的边分别是的面积为,且.

(1)求的值;

(2)若,求的值.

【答案】(1)(2)

【解析】

(1)由已知利用三角形面积公式可得tanA=2,利用同角三角函数基本关系式可求sinA,cosA,由三角形内角和定理,两角和的余弦函数公式可求cosB的值.

(2)利用同角三角函数基本关系式可求sinB,利用正弦定理可得b的值,即可得S的值.

(1)∵SbcsinAbccosA

∴sinA=2cosA,可得:tanA=2,

∵△ABC中,A为锐角,

又∵sin2A+cos2A=1,

∴可得:sinA,cosA

又∵C

∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC

(2)在△ABC中,sinB

由正弦定理,可得:b3,

SbccosA=3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,点的中点

(1)求证:平面

(2)若平面 平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运输公司年有万辆公交车,计划年投入辆新型号公交车,以后每年投入的新型号公交车数量均比上年增加.

1年应投入多少辆新型号公交车?

2)从年到年间共投入多少辆新型号公交车?

3)从哪一年开始,该公司新型号公交车总量超过该公司公交车总量的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,椭圆轴交于两点,且

(1)求椭圆的方程;

(2)设点是椭圆上的一个动点,且点轴的右侧,直线与直线交于两点,若以为直径的圆与轴交于,求点横坐标的取值范围及的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且右焦点为

1)求椭圆的方程;

2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;

3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个不同的红球和个不同的白球,放入同一个袋中,现从中取出个球.

1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;

2)取出一个红球记分,取出一个白球记分,若取出个球的总分不少于分,则有多少种不同的取法;

3)若将取出的个球放入一箱子中,记“从箱子中任意取出个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到个红球并且恰有一次取到个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两班各随机抽取10名同学,下面的茎叶图记录了这20名同学在2018年高考语文作文题目中的成绩(单位:分).已知语文作文题目满分为60分,“分数分,为及格;分数分,为高分”,若甲、乙两班的成绩的平均分都是44分,

(1)求的值;

(2)若分别从甲、乙两班随机各抽取1名成绩为高分的学生,求抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,探究零点的个数;

(2)①证明:

②当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l 过点,一个方向向量,则直线l 的方程是(

A.=0B.

C.D.

查看答案和解析>>

同步练习册答案