精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥如图的展开图如图2,其中四边形ABCD为边长等于的正方形,均为正三角形.

(1)证明:平面平面ABC

(2)若MPC的中点,点N在线段PA上,且满足,求直线MN与平面PAB所成角的正弦值.

【答案】(1)详见解析;(2).

【解析】

利用等腰三角形的三线合一的性质、勾股定理的逆定理,利用线面垂直来证面面垂直;

建立空间直角坐标系,利用向量法来求直线与平面所成的角.

解:AC的中点O,连接OP,OB,则有

OAC的中点,;同理,

平面POB,则有为平面的平面角,

中,,,则有,

平面平面ABC

可知,平面ABC,则有,又,所以,建立如右图所示的空间直角坐标系.

则有,,0,1,0,0,

PC的中点,,又,,

设平面PAB的一个法向量为,则有,,

设直线MN与平面PAB所成角为,

故直线MN与平面PAB所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面与平面所成的角依次是依次是上的点,其中.

1)求直线与平面所成的角(结果用反三角函数值表示);

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l1,在路南侧沿直线铺设线路l2,现要在矩形区域ABCD内沿直线将l1l2接通.已知AB = 60mBC = 80m,公路两侧铺设水管的费用为每米1万元,穿过公路的EF部分铺设水管的费用为每米2万元,设EFB= α,矩形区域内的铺设水管的总费用为W

1)求W关于α的函数关系式;

2)求W的最小值及相应的角α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的函数,若存在,使得单调递增,在上单调递减,则称上的单峰函数,为峰点,包含峰点的区间称为含峰区间,其含峰区间的长度为:

(1)判断下列函数中,哪些是“上的单峰函数”?若是,指出峰点;若不是,说出原因;

(2)若函数上的单峰函数,求实数的取值范围;

(3)若函数是区间上的单峰函数,证明:对于任意的,若,则为含峰区间;若,则为含峰区间;试问当满足何种条件时,所确定的含峰区间的长度不大于0.6.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为.

1)若,求的值;

2)若,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,给出以下四个命题,其中真命题的序号是_______.

时,单调递减且没有最值;

②方程一定有解;

③如果方程有解,则解的个数一定是偶数;

是偶函数且有最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8.

有时可用函数

描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.

1) 证明:当时,掌握程度的增加量总是下降;

2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为,,

.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体..

1)求证:

2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案